• Title/Summary/Keyword: linear approximation

Search Result 748, Processing Time 0.022 seconds

Localized particle boundary condition enforcements for the state-based peridynamics

  • Wu, C.T.;Ren, Bo
    • Interaction and multiscale mechanics
    • /
    • v.7 no.1
    • /
    • pp.525-542
    • /
    • 2014
  • The state-based peridynamics is considered a nonlocal method in which the equations of motion utilize integral form as opposed to the partial differential equations in the classical continuum mechanics. As a result, the enforcement of boundary conditions in solid mechanics analyses cannot follow the standard way as in a classical continuum theory. In this paper, a new approach for the boundary condition enforcement in the state-based peridynamic formulation is presented. The new method is first formulated based on a convex kernel approximation to restore the Kronecker-delta property on the boundary in 1-D case. The convex kernel approximation is further localized near the boundary to meet the condition that recovers the correct boundary particle forces. The new formulation is extended to the two-dimensional problem and is shown to reserve the conservation of linear momentum and angular momentum. Three numerical benchmarks are provided to demonstrate the effectiveness and accuracy of the proposed approach.

EQUALITY IN DEGREES OF COMPACTNESS: SCHAUDER'S THEOREM AND s-NUMBERS

  • Asuman Guven Aksoy;Daniel Akech Thiong
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1127-1139
    • /
    • 2023
  • We investigate an extension of Schauder's theorem by studying the relationship between various s-numbers of an operator T and its adjoint T*. We have three main results. First, we present a new proof that the approximation number of T and T* are equal for compact operators. Second, for non-compact, bounded linear operators from X to Y, we obtain a relationship between certain s-numbers of T and T* under natural conditions on X and Y . Lastly, for non-compact operators that are compact with respect to certain approximation schemes, we prove results for comparing the degree of compactness of T with that of its adjoint T*.

Methods to Obtain Approximate Responses of a Non-Linear Vibration Isolation System (비선형 진동절연 시스템의 근사적 응답을 구하는 방법)

  • Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.23-28
    • /
    • 2020
  • A non-linear vibration isolation system composed of a non-linear spring and a linear damper was presented in a previous study. The advantage of the proposed isolator is the simple structure of the system. When the base of the isolator is harmonically excited, the response component of the mass at the excitation frequency was approximated using three different methods: linear approximation, harmonic balance, and higher-order frequency response functions (FRFs). The method using higher-order FRFs produces significantly more accurate results compared with the other methods. The error between the exact and approximate responses does not increase monotonously with the excitation amplitude and is less than 2%.

ESTIMATION OF FREQUENCIES FROM MODIFIED LINEAR PREDICTION METHODS (변형된 선형 예측 방법으로 부터 주파수 측정)

  • Ahn, Tae-Chon;Park, Yong-Seo;Whang, Kuem-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.473-476
    • /
    • 1988
  • The problem of estimating the frequencies of multiple sinusoids from noisy measurements by using the modified linear prediction methods - Modified Forward-Backward Linear Prediction(MFBLP) and Model Reduction(MR) methods is addressed in this paper. The MFBLP and MR methods are derived by singular value decomposition and approximation of linear system. respectively. Monte Carlo simulations are done and the performances compared with linear prediction and forward-backward linear prediction. Simulations show a great promise for MFBLP and MR.

  • PDF

A Fractional Model Reduction for Linear Systems with State Delay (상태변수 시간지연을 갖는 선형시스템의 분수 모델 축소)

  • Yoo, Seog-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.2
    • /
    • pp.29-36
    • /
    • 2004
  • This paper deals with a fractional model reduction for linear systems with time varying delayed states. A contractive coprime factorization of linear time delayed systems is defined and obtained by solving linear matrix inequalities. Using generalize controllability and observability gramians of tile contractive coprime factor, a balanced state space realization of the system is derived. The reduced model will be obtained by truncating states in the balanced realization and an upper bound of model approximation error is also presented. In order to demonstrate efficacy of the suggested method, a numerical example is illustrated.

Progressive Quadratic Approximation Method for Effective Constructing the Second-Order Response Surface Models in the Large Scaled System Design (대형 설계 시스템의 효율적 반응표면 근사화를 위한 점진적 이차 근사화 기법)

  • Hong, Gyeong-Jin;Kim, Min-Su;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3040-3052
    • /
    • 2000
  • For effective construction of second-order response surface models, an efficient quad ratic approximation method is proposed in the context of trust region model management strategy. In the proposed method, although only the linear and quadratic terms are uniquely determined using 2n+1 design points, the two-factor interaction terms are mathematically updated by normalized quasi-Newton formula. In order to show the numerical performance of the proposed approximation method, a sequential approximate optimizer is developed and solves a typical unconstrained optimization problem having 2, 6, 10, 15, 30 and 50 design variables, a gear reducer system design problem and two dynamic response optimization problems with multiple objectives, five objectives for one and two objectives for the other. Finally, their optimization results are compared with those of the CCD or the 50% over-determined D-optimal design combined with the same trust region sequential approximate optimizer. These comparisons show that the proposed method gives more efficient than others.

Numerical Verification of the First Four Statistical Moments Estimated by a Function Approximation Moment Method (함수 근사 모멘트 방법에서 추정한 1∼4차 통계적 모멘트의 수치적 검증)

  • Kwak, Byung-Man;Huh, Jae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.490-495
    • /
    • 2007
  • This research aims to examine accuracy and efficiency of the first four moments corresponding to mean, standard deviation, skewness, and kurtosis, which are estimated by a function approximation moment method (FAMM). In FAMM, the moments are estimated from an approximating quadratic function of a system response function. The function approximation is performed on a specially selected experimental region for accuracy, and the number of function evaluations is taken equal to that of the unknown coefficients for efficiency. For this purpose, three error-minimizing conditions are utilized and corresponding canonical experimental regions constructed accordingly. An interpolation function is then obtained using a D-optimal design and then the first four moments of it are obtained as the estimates for the system response function. In order to verify accuracy and efficiency of FAMM, several non-linear examples are considered including a polynomial of order 4, an exponential function, and a rational function. The moments calculated from various coefficients of variation show very good accuracy and efficiency in comparison with those from analytic integration or the Monte Carlo simulation and the experimental design technique proposed by Taguchi and updated by D'Errico and Zaino.

Axisymmetric vibrations of layered cylindrical shells of variable thickness using spline function approximation

  • Viswanathan, K.K.;Kim, Kyung Su;Lee, Jang Hyun;Lee, Chang Hyun;Lee, Jae Beom
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.749-765
    • /
    • 2008
  • Free axisymmetric vibrations of layered cylindrical shells of variable thickness are studied using spline function approximation techniques. Three different types of thickness variations are considered namely linear, exponential and sinusoidal. The equations of axisymmetric motion of layered cylindrical shells, on the longitudinal and transverse displacement components are obtained using Love's first approximation theory. A system of coupled differential equations on displacement functions are obtained by assuming the displacements in a separable form. Then the displacements are approximated using Bickley-spline approximation. The vibrations of two-layered cylindrical shells, made up of several types of layered materials and different boundary conditions are considered. Parametric studies have been made on the variation of frequency parameter with respect to the relative layer thickness, length ratio and type of thickness variation parameter.

Displacement prediction in geotechnical engineering based on evolutionary neural network

  • Gao, Wei;He, T.Y.
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.845-860
    • /
    • 2017
  • It is very important to study displacement prediction in geotechnical engineering. Nowadays, the grey system method, time series analysis method and artificial neural network method are three main methods. Based on the brief introduction, the three methods are analyzed comprehensively. Their merits and demerits, applied ranges are revealed. To solve the shortcomings of the artificial neural network method, a new prediction method based on new evolutionary neural network is proposed. Finally, through two real engineering applications, the analysis of three main methods and the new evolutionary neural network method all have been verified. The results show that, the grey system method is a kind of exponential approximation to displacement sequence, and time series analysis is linear autoregression approximation, while artificial neural network is nonlinear autoregression approximation. Thus, the grey system method can suitably analyze the sequence, which has the exponential law, the time series method can suitably analyze the random sequence and the neural network method almostly can be applied in any sequences. Moreover, the prediction results of new evolutionary neural network method is the best, and its approximation sequence and the generalization prediction sequence are all coincided with the real displacement sequence well. Thus, the new evolutionary neural network method is an acceptable method to predict the measurement displacements of geotechnical engineering.

Approximation Algorithm for Multi Agents-Multi Tasks Assignment with Completion Probability (작업 완료 확률을 고려한 다수 에이전트-다수 작업 할당의 근사 알고리즘)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • A multi-agent system is a system that aims at achieving the best-coordinated decision based on each agent's local decision. In this paper, we consider a multi agent-multi task assignment problem. Each agent is assigned to only one task and there is a completion probability for performing. The objective is to determine an assignment that maximizes the sum of the completion probabilities for all tasks. The problem, expressed as a non-linear objective function and combinatorial optimization, is NP-hard. It is necessary to design an effective and efficient solution methodology. This paper presents an approximation algorithm using submodularity, which means a marginal gain diminishing, and demonstrates the scalability and robustness of the algorithm in theoretical and experimental ways.