• 제목/요약/키워드: linear Matrix Inequality

검색결과 485건 처리시간 0.065초

연속/이산 특이치 시스템의 $H_2$ 제어 ($H_2$ Control of Continuous and Discrete Time Descriptor Systems)

  • 이종하;김종해;박홍배
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.29-32
    • /
    • 2001
  • This paper presents matrix inequality conditions for H$_2$optimal control of linear time-invariant descriptor systems in continuous and discrete time cases, respectively. First, the necessary and sufficient condition for H$_2$control and H$_2$controller design method are expressed in terms of LMls(linear matrix inequalities) with no equality constraints in continuous time case. Next, the sufficient condition for H$_2$control and H$_2$controller design method are proposed by matrix inequality approach in discrete time case. A numerical example is given in each case.

  • PDF

계수조건부 LMI를 이용한 다목적 제어기 설계 (Multi-Objective Controller Design using a Rank-Constrained Linear Matrix Inequality Method)

  • 김석주;김종문;천종민;권순만
    • 제어로봇시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.67-71
    • /
    • 2009
  • This paper presents a rank-constrained linear matrix inequality (LMI) approach to the design of a multi-objective controller such as $H_2/H_{\infty}$ control. Multi-objective control is formulated as an LMI optimization problem with a nonconvex rank condition, which is imposed on the controller gain matirx not Lyapunov matrices. With this rank-constrained formulation, we can expect to reduce conservatism because we can use separate Lyapunov matrices for different control objectives. An iterative penalty method is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method.

Delay-Dependent Guaranteed Cost Control for Uncertain Neutral Systems with Distributed Delays

  • Li, Yongmin;Xu, Shengyuan;Zhang, Baoyong;Chu, Yuming
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.15-23
    • /
    • 2008
  • This paper considers the problem of delay-dependent guaranteed cost controller design for uncertain neutral systems with distributed delays. The system under consideration is subject to norm-bounded time-varying parametric uncertainty appearing in all the matrices of the state-space model. By constructing appropriate Lyapunov functionals and using matrix inequality techniques, a state feedback controller is designed such that the resulting closed-loop system is not only robustly stable but also guarantees an adequate level of performance for all admissible uncertainties. Furthermore, a convex optimization problem is introduced to minimize a specified cost bound. By matrix transformation techniques, the corresponding optimal guaranteed controller can be obtained by solving a linear matrix inequality. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed approach.

A Sliding Surface Design for Linear Systems with Mismatched Uncertainties based on Linear Matrix Inequality

  • Jang, Seung-Ho;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.561-565
    • /
    • 2005
  • Sliding mode control (SMC) is an effective method of controlling systems with uncertainties which satisfy the so-called matching condition. However, how to effectively handle mismatched uncertainties of systems is still an ongoing research issue in SMC. Several methods have been proposed to design a stable sliding surface even if mismatched uncertainties exist in a system. Especially, it is presented that robustness and efficiency of SMC for linear systems with mismatched uncertainties can be improved by reducing mismatched uncertainties in the reduced-order system. The reduction method needs a new sliding surface with an additional component based on Lyapunov redesign technique. In this paper, a stable sliding surface which contains additional component to reduce the influence of mismatched uncertainties, is introduced. It is designed by using linear matrix inequalities that guarantees the stability of the system. A numerical example demonstrates the validity of the proposed scheme.

  • PDF

New Robust $H_{\infty}$ Performance Condition for Uncertain Discrete-Time Systems

  • Zhai, Guisheng;Lin, Hai;Kim, Young-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.322-326
    • /
    • 2003
  • In this paper, we establish a new robust $H_{\infty}$ performance condition for uncertain discrete-time systems with convex polytopic uncertainties. We express the condition as a set of linear matrix inequalities (LMIs), which are used to check stability and $H_{\infty}$ disturbance attenuation level by a parameter-dependent Lyapunov matrix. We show that the new condition provides less conservative result than the existing ones which use single Lyapunov matrix. We also show that the robust $H_{\infty}$ state feedback design problem for such uncertain discrete-time systems can be easily dealt with using the approach. The key point in this paper is to propose a kind of decoupling between the Lyapunov matrix and the system matrices in the parameter-dependent matrix inequality by introducing one new matrix variable.

  • PDF

구동기 고장을 가지는 특이시스템의 신뢰 $H_\infty$ 제어 (Reliable $H_\infty$ control for descriptor systems with actuator failures)

  • 김종해
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.135-138
    • /
    • 2003
  • In this paper, we provide a reliable few controller design method for descriptor systems satisfying asymptotic stability with $H_\infty$ norm bound and all actuator failures occurred within the pre-specified subset. The proper condition for the existence of a reliable $H_\infty$ controller and the controller design method are proposed by linear matrix inequality(LMI), Schur complements, and singular value decomposition. All solutions can be obtained simultaneously because the presented sufficient condition can be expressed as an LMI form.

  • PDF

NEW RESULT CONCERNING MEAN SQUARE EXPONENTIAL STABILITY OF UNCERTAIN STOCHASTIC DELAYED HOPFIELD NEURAL NETWORKS

  • Bai, Chuanzhi
    • 대한수학회보
    • /
    • 제48권4호
    • /
    • pp.725-736
    • /
    • 2011
  • By using the Lyapunov functional method, stochastic analysis, and LMI (linear matrix inequality) approach, the mean square exponential stability of an equilibrium solution of uncertain stochastic Hopfield neural networks with delayed is presented. The proposed result generalizes and improves previous work. An illustrative example is also given to demonstrate the effectiveness of the proposed result.

LMI를 이용한 정적출력궤환 동시안정화 제어기 설계 (Simultaneous stabilization via static ouput feedback using an LMI method)

  • 김석주;천종민;이종무;권순만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.523-525
    • /
    • 2005
  • This paper deals with a linear matrix inequality (LMI) approach to the design of a static output feedback controller that simultaneously stabilizes a finite collection of linear time-invariant plants. Simultaneous stabilization by static ouput feedback is represented in terms of LMIs with a rank condition. An iterative penalty method is proposed to solve the rank-constrained LMI problem. Numerical experiments show the effectiveness of the proposed algorithm.

  • PDF

흡인식 자기부상시스템의 $H_ {\infty}$ PID 제어기 설계 ($H_ {\infty}$ PID Controller Design for an Attraction Type Magnetic Levitation System)

  • 김석주;김춘경;권순만
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1624-1627
    • /
    • 2008
  • This paper deals with a linear matrix inequality (LMI) approach to the design of a PID controller for an attraction type magnetic levitation system. First, we convert the $H_ {\infty}$ PID controller problem into a static output feedback problem. We then solve the static output problem by using the recently developed penalty function method. Numerical experiments show the effectiveness of the proposed algorithm.

극 영역을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어 (Robust Control of Horizontal-Shaft Magnetic Bearing System considering Pole Assignment Region)

  • 김창화;추만석;양주호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.21-21
    • /
    • 2000
  • In this paper, we design the state feedback gain using linear matrix inequality(LMI) to the multiobjective synthesis, in the magnetic bearing system with integral type servo system. The design objectives can be a H$\_$$\infty$/ performance, asymptotic disturbance rejection, time-domain constraints, on the closed-lnp pole location. To the end, we investigated the validity of the designed controller through results of simulation.

  • PDF