• Title/Summary/Keyword: line of gravity

Search Result 197, Processing Time 0.021 seconds

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

Development of Variable Rate Granule Applicator for Environment-Friendly Precision Agriculture (I) - Concept Design of Variable Rate Pneumatic Granule Applicator and Manufacture of Prototype - (친환경 정밀농업을 위한 입제 변량살포기 개발 (I) - 송풍식 입제 변량살포기 개념설계와 시작기 제작 -)

  • Ryu K.H.;Kim Y.J.;Cho S.I.;Rhee J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.305-314
    • /
    • 2006
  • Precision farming has been known as an environment friendly farming technology. This study was conducted to develop a variable-rate granule fertilizer applicator as an attempt for introducing the precision farming technologies to rice cultivation in Korea. In this paper, concept design process and manufacturing of prototype variable rate granule applicator was reported. For concept design, some design guide lines were selected. Based on the design guide line and some engineering knowledge, concept design was conducted. The designed prototype granule applicator was mounted at the rear of riding type cultivator for paddy field and had a 10m wide boom structure with pneumatic conveying and application system as well as 1GPS receiver, 1 granule hopper, 12 blow heads, 2 metering devices and 1 controller. The fertilizer applicator had 942 ka of weight, 740m of ground clearance and 1,117mm of center of gravity from the ground. The applicator was designed to be able to $34{\sim}428kg/ha$ of granule at $0.2{\sim}0.8m/s$ of fertilizer working speed.

H1R4: Mock 21cm intensity mapping maps for cross-correlations with optical surveys

  • Asorey, Jacobo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.56.3-56.3
    • /
    • 2019
  • We are currently living in the era of the wide field cosmological surveys, either spectroscopic such as Dark Energy Spectrograph Instrument or photometric such as the Dark Energy Survey or the Large Synoptic Survey Telescope. By analyzing the distribution of matter clustering, we can use the growth of structure, in combination with measurements of the expansion of the Universe, to understand dark energy or to test different models of gravity. But we also live in the era of multi-tracer or multi-messenger astrophysics. In particular, during the next decades radio surveys will map the matter distribution at higher redshifts. Like in optical surveys, there are radio imaging surveys such as continuum radio surveys such as the ongoing EMU or spectroscopic by measuring the hydrogen 21cm line. However, we can also use intensity mapping as a low resolution spectroscopic technique in which we use the intensity given by the emission from neutral hydrogen from patches of the sky, at different redshifts. By cross-correlating this maps with galaxy catalogues we can improve our constraints on cosmological parameters and to understand better how neutral hydrogen populates different types of galaxies and haloes. Creating realistic mock intensity mapping catalogues is necessary to optimize the future analysis of data. I will present the mock neutral hydrogen catalogues that we are developing, using the Horizon run 4 simulations, to cross-correlate with mock galaxy catalogues from low redshift surveys and I will show the preliminary results from the first mock catalogues.

  • PDF

Optimal Reheating Condition of Semi-solid Material in Semi-solid Forging by Neural Network

  • Park, Jae-Chan;Kim, Young-Ho;Park, Joon-Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • As semi-solid forging (SSF) is compared with conventional casting such as gravity die-casting and squeeze casting, the product without inner defects can be obtained from semi-solid forming and globular microstructure as well. Generally, SSF consists of reheating, forging, and ejecting processes. In the reheating process, the materials are heated up to the temperature between the solidus and liquidus line at which the materials exists in the form of liquid-solid mixture. The process variables such as reheating time, reheating temperature, reheating holding time, and induction heating power has large effect on the quality of the reheated billets. It is difficult to consider all the variables at the same time for predicting the quality. In this paper, Taguchi method, regression analysis and neural network were applied to analyze the relationship between processing conditions and solid fraction. A356 alloy was used for the present study, and the learning data were extracted from the reheating experiments. Results by neural network were in good agreement with those by experiment. Polynominal regression analysis was formulated using the test data from neural network. Optimum processing condition was calculated to minimize the grain size and solid fraction standard deviation or to maximize the specimen temperature average. Discussion is given about reheating process of row material and results are presented with regard to accurate process variables fur proper solid fraction, specimen temperature and grain size.

PULSATIONAL CHARACTERISTICS OF V1719 CYGNI WITH PECULIAR LIGHT CURVE

  • KIM CHULHEE;KIM SEUNG-LI;SADAKANE KOZO
    • Journal of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.115-134
    • /
    • 1993
  • The light curve and radial velocity curve of multiperiodic dwarf cepheid VI719 Cyg (HD200925) with peculiar light curve have been reanalyzed in order to identify the oscillation modes to confirm the helium settling within the envelope. To do these, through the period search for the photometric and radial velocity data from the literature, two different periods were determined and the oscillation modes corresponding to the first and second periods were identified as the fundamental and first radial overtones. Hence the helium settling within the envelope was confirmed from the period ratio. The color excess, metallicity, effective temperature, and surface gravity corresponding to two different modes were determined and it was found that these parameters almost do not depend upon different oscillation mode. By utilizing the surface brightness method, we investigated the variation of angular diameter and radial displacement and it was found that the angular variation is very peculiar. Also by referring to the stellar models, mass and age were determined as $2.7M_{\bigodot}$ and 0.42 Gyr respectively which make this variable star heavier and younger than other multimode dwarf cepheids. Preliminary spectroscopic CCD observations were carried out and it was found that Mg in VI719 Cygni is nearly solar abundent according to the analysis of $5172.68{\AA}MgI$ line which is inconsistent with the photometric result. It was suggested that VI719 Cyg may be classified as a $\rho$ Pup stars according to the photometric characteristics.

  • PDF

Development of an ECCS Injection Model By Gravity and Flow Rate Distributions in the Passive Reactor Systems (비상노심냉각수의 중력에 의한 주입 및 피동형노심내의 흐름율 분포모델의 개발)

  • Lim, H.G.;Kim, G.S.;Lee, U.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.562-569
    • /
    • 1994
  • In this study improvement of transient analysis model, KOTRAC, for the passive reactor has been performed. In the KOTRAC, mixture drift flux model is adopted to simulate thermal hydraulic behavior, which can simulate ECCS injection in the passive plant. However, there is a difficulty to handle complete phase separation phenomena due to the near-zero density, which may occur in the pressurizer surge line or horizontal flow paths. In this study, a couple of model changes to over-come Courant limit feilure has been examined. One of key features is to substitute flow distribution parameters with Ishii's correlation. Corrected results are nil compared to those of RELAP/MOD3 analysis.

  • PDF

On-line Quality Assurance of Linear Accelerator with Electronic Portal Imaging System (전자포탈영상장치(EPID)를 이용한 선형가속기의 기하학적 QC/QA System)

  • Lee, Seok;Jang, Hye-Sook;Choi, Eun-Kyung;Kwon, Soo-Il;Lee, Byung-Yong
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.127-136
    • /
    • 1998
  • On-line geometrical quality assurance system has been developed using electronic portal imaging system(OQuE). EPID system is networked into Pentium PC in order to transmit the acquisited images to analysis PC. Geometrical QA parameters, including light-radiation field congruence, collimator rotation axis, and gantry rotation axis can be easily analyzed with the help of graphic user interface(GUI) software. Equipped with the EPID (Portal Vision, Varian, USA), geometrical quality assurance of a linear accelerator (CL/2100/CD, Varian, USA), which is networked into OQuE, was performed to evaluate this system. Light-radiation field congruence tests by center of gravity analysis shows 0.2~0.3mm differences for various field sizes. Collimator (or Gantry) rotation axis for various angles could be obtained by superposing 4 shots of angles. The radius of collimator rotation axis is measured to 0.2mm for upper jaw collimator, and 0.1mm for lower jaw. Acquisited images for various gantry angles were rotated according to the gantry angle and actual center of image point obtained from collimator axis test. The rotated images are superpositioned and analyzed as the same method as collimator rotation axis. The radius of gantry rotation axis is calculated 0.3mm for anterior/posterior direction (gantry 0$^{\circ}$ and 170$^{\circ}$) and 0.7mm for right/left direction(gantry 90$^{\circ}$ and 260$^{\circ}$). Image acquisition for data analysis is faster than conventional method and the results turn out to be excellent for the development goal and accurate within a milimeter range. The OQuE system is proven to be a good tool for the geometrical quality assurance of linear accelerator using EPID.

  • PDF

Recovery of Mass Changes in Antarctic Ice-Sheet based on the Regional Climate Model, RACMO (RACMO 기후 모델에 기반한 남극 빙상 질량 변동의 재현)

  • Eom, Jooyoung;Rim, Hyoungrea
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.147-157
    • /
    • 2020
  • Mass change in the Antarctic Ice Sheet(AIS) is the most important indicator of changes in Earth's climate system including global mean sea level rise that are largely affected by ongoing global warming. In this study, AIS mass variations are examined with satellite gravity data and outputs from a regional climate model. The analysis of gravity data shows that along the coastal region the Western AIS has experienced a continuous and significant ice loss while a slight increasing in the Eastern AIS during the study period (2002.08-2016.08). The temporal and spatial variations in ice mass changes are recovered by a regional climate model, but the recovered amplitudes are much smaller than those of observations. This under-estimation is remarkably resolved by modifying a base flow field for the ice discharge. The recovered estimates based on the ice-flow field can explain about 97% of the rate of mass change in observations before 2009. This implies that changes in ice flow dynamics along the coast line plays a pivotal role in regulating long-term budget of ice mass in AIS.

Modeling the Distribution Demand Estimation for Urban Rail Transit (퍼지제어를 이용한 도시철도 분포수요 예측모형 구축)

  • Kim, Dae-Ung;Park, Cheol-Gu;Choe, Han-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.25-36
    • /
    • 2005
  • In this study, we suggested a new approach method forecasting distribution demand of urban rail transit usign fuzzy control, with intend to reflect irregularity and various functional relationship between trip length and distribution demand. To establish fuzzy control model and test this model, the actual trip volume(production, attraction and distribution volume) and trip length (space distance between a departure and arrival station) of Daegu subway line 1 were used. Firstly, usign these data we established a fuzzy control model, nd the estimation accuracy of the model was examined and compared with that of generalized gravity model. The results showed that the fuzzy control model was superior to gravity model in accuracy of estimation. Therefore, wwe found that fuzzy control was able to be applied as a effective method to predict the distribution demand of urban rail transit. Finally, to increase the estimation precision of the model, we expect studies that define membership functions and set up fuzzy rules organized with neural networks.

Correction of Aircraft Empty Weight CG due to LRU Modification (구성품 변경에 따른 항공기 공허중량 무게중심 수정 및 검증)

  • Lee, Jin-Won;Kwon, Na-Eun;Kim, Ji-Hong;Park, Jae Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.551-557
    • /
    • 2022
  • LRU (Line Replacement Unit) modifications are often required for military aircraft due to aging. Recently, LRU modifications were proceeded for KA-O (Armed Airborne Controller) by replacing the ejection seat and adding avionic equipment, which made the aircraft's operational CG (Center of Gravity) on fuel consumption curve become out of the range of the specification requested. The off-ranged CG should be corrected by introducing an appropriate method. This study proposes a procedure for revising and verifying the empty weight CG altered due to LRU modification for small military aircraft (e.g., KA-O). In the proposed method, first, the change of empty weight CG of KA-O due to the LRU modifications is comprehensively examined. Then, several ballast masses are added to the engine mount strut to restore the empty weight CG on the fuel consumption curve to a safe operational range. The installations are verified via stress and fatigue analysis for various operating conditions. Considering that open information is not very available for the revision of empty weight CG, this study is valuable because it presents an established procedure for correcting and verifying empty weight CG during aircraft modification.