• 제목/요약/키워드: line capacity simulation

Search Result 164, Processing Time 0.025 seconds

Development of a Reclosing Scheme for Reduction of Turbine Generator Shaft Torsional Torques: A Decision Method to Achieve Optimal Reactor Capacity

  • Oh, Yun-Sik;Seo, Hun-Chul;Yang, Jeong-Jae;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1145-1153
    • /
    • 2014
  • It is well known that line switching operations like reclosing are able to cause transient power oscillations which can stress or damage turbine generators. This paper presents a reclosing scheme to reduce the shaft torsional torques of turbine generators by inserting an additional reactor. A novel method to determine optimal reactor capacity to minimize the torsional torque generated in a turbine generator is also proposed. In this paper, the turbine generator shaft is represented by a multi-mass model to measure torsional torques generated in the shaft between the turbine and the generator. Transmission systems based on actual data from Korea are modeled to verify the proposed scheme using ElectroMagnetic Transient Program (EMTP) software. The simulation results clearly show the effectiveness of the proposed scheme and torsional torque can be minimized by applying the proposed scheme.

A Model for Real-time Reservoir Operations during Flood Period.II : Single Reservoir Operating Rules at Daecheong Dam (홍수기중의 실시간 저수지운영 모형(II) - 대청댑의 단일저수지 운영 방안 -)

  • 심명필;박인보
    • Water for future
    • /
    • v.23 no.4
    • /
    • pp.499-507
    • /
    • 1990
  • Real-time reservoir operation models during flood period require optimization of hourly releases from the input data through on-line system. And predicted values. An algorithm of the simulation model to resolve the problem has already been reported with formulation of objectives to minimize the flood damage in downstream reaches and to conserve water at the end of operation for the later use. This paper presents an application of the model to a single reservoir system at the Daecheong Dam during flood and the results are reviewed. This paper also reviews measured inflows and releases in the past. The model is applied to the flood hydrographs of several return periods assuming different reservoir levels at the beginning of the operation. Also it demonstrates the simulation of test run with inflow forecasts obtained by rainfall-runoff model and compares the results. As a result, the model can use efficiently the flood control capacity with consideration of risk factor for the uncertainties associated with inflow forecasts.

  • PDF

Explicit Expression for Moment of Waiting Time in a DBR Line Production System with Constant Processing Times Using Max-plus Algebra (Max-plus 대수를 이용한 상수 공정시간을 갖는 DBR 라인 생산시스템에서의 대기시간에 대한 간결한 표현식)

  • Park, Philip;Seo, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.2
    • /
    • pp.11-17
    • /
    • 2015
  • Although systems with finite capacities have been the topic of much study, there are as of yet no analytic expressions for (higher) moment and tail probability of stationary waiting times in systems with even constant processing times. The normal queueing theory cannot properly handle such systems due to the difficulties caused by finite capacity. In this study, for a DBR (Drum-Buffer-Rope) line production system with constant processing times, we introduce analytic expressions by using previous results obtained using a max-plus algebraic approach.

Selection of The Optimal Line using 3D GIS (3차원 지형정보를 이용한 최적노선 선정)

  • Han, Byoung-Cheol;Choi, Hyun;Kang, Sang-Yun;Kang, In-Joon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.367-374
    • /
    • 2004
  • Roads which were not considered conditions such as capacity of the traffic have made seriously traffic problems and complex road lines. Construction of new roads have to make efficiently for solving the above problems and gain benefits. Simulation using 3D-GIS help find a matter of the design and do understanding users who work In the practical businesses. This study is showed selection of the optimal road line based on 3D-GIS through the traffic modeling.

  • PDF

Voltage Estimation Method for Distribution Line with Irregularly Dispersed Load (부하가 불규칙하게 분포된 배전선로의 전압추정 방법)

  • Park, Sanghyeon;Lim, Seongil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.491-497
    • /
    • 2018
  • Most of the applications for distribution system operation highly rely on the voltage and current managements from the field devices. Voltage from the remote controlled switch contains unacceptably large measurement error due to the nonlinear characteristics of the bushing potential transformer. This paper proposes a new voltage magnitude estimation method by calculating voltage drop using current measurement, line impedance and loads deployment data. Contract demand power and pole transformer capacity managed by NDIS are used as a key element to improve accuracy of the proposed method. Various case studies using Matlab simulation have been performed to verify feasibility of the propose voltage estimation method.

Inelastic analysis of RC beam-column subassemblages under various loading histories

  • You, Young-Chan;Yi, Waon-Ho;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.69-80
    • /
    • 1999
  • The purpose of this study is to propose an analytical model for the simulation of the hysteretic behavior of RC (reinforced concrete) beam-column subassemblages under various loading histories. The discrete line element with inelastic rotational springs is adopted to model the different locations of the plastic hinging zone. The hysteresis model can be adopted for a dynamic two-dimensional inelastic analysis of RC frame structures. From the analysis of test results it is found that the stiffness deterioration caused by inelastic loading can be simulated with a function of basic pinching coefficients, ductility ratio and yield strength ratio of members. A new strength degradation coefficient is proposed to simulate the inelastic behavior of members as a function of the transverse steel spacing and section aspect ratio. The energy dissipation capacities calculated using the proposed model show a good agreement with test results within errors of 27%.

A Study on the Headway of the Personal Rapid Transit System (개인고속이동(Personal Rapid Transit) 시스템의 운전시격에 대한 연구)

  • Shin Ducko;Kim Yong-Kyu;Lee Jun-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.586-591
    • /
    • 2005
  • We deal with the headway which effects on the performance of the PRT(Personal Rapid Transit) system and the system safety. The headway, time between passage of one vehicle and the next, is one of the important factors to assess the line capacity, which has a cue to solve the problem of the congestion in public transportation. To decide the headway there are many important factors, especially such as the failure vehicle deceleration rate, the following simple analytical equation can be made to assess the relation between the line speed and the minimum headway. In this paper we employ a numerical analysis method using a simple analytical equations for the evaluation of the minimum headway and show simple simulation results.

Consideration of the Distributed Generator's Capacity in Determining the Protective Devices (배전선 보호기기 선정 시 계통 연계 분산전원의 용량 고려)

  • Park, I.K.;Jang, S.I.;Park, Y.U.;Kim, S.G.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.331-333
    • /
    • 2003
  • This paper describes the effect of the interconnected wind turbine generators on fault current level of distribution networks. Distributed generator(DG) interconnected with grid can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the distribution power line with DG, the fault current level measured in a relaying point might be higher than that of distribution network without wind turbine generator due to the contribution of wind farm. Consequently, it may destroy the conventional protective devices applied in the distribution network with DG. Simulation results shows that the current level of fault happened in the power line with DG depends on the power output of DG.

  • PDF

Analysis on Induced Lightning of a 22.9kV-Y Distribution Line Using a Reduced Model (축소모델을 이용한 22.9kV-Y 배전선로의 유도뢰 분석)

  • Kim, Jeom-Sik;Kim, Do-Young;Park, Yong-Beom;Kwon, Sin-Won;Gil, Kyung-Suk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.434-439
    • /
    • 2010
  • This study fabricated a simulation facility which reduced the structure of a current distribution line to 50:1 in order to analyze the induced lightning shielding effect of a 22.9kV-Y distribution line according to ground resistance capacity, grounding locations, etc. When installing an overhead ground wire, the standard for grounding a distribution line with a current of 22.9kV-Y requires that ground resistance in common use with the neutral line be maintained less than $50\Omega$every 200m span. The reduced line for simulation had 7 electric poles and induced lightning was applied to the ground plane 2m apart from the line in a direction perpendicular to it using an impulse generator. If induced voltage occurred in the line and induced current flowed through the line due to the applied current, the induced voltage and current of the 'A' phase were measured respectively using an oscilloscope. When all 7 electric poles were grounded with a ground resistance of less than $50\Omega$ respectively, the combined resistance of the line was $7.4\Omega$. When an average current of 230A was applied, the average induced voltage and current measured were 1,052V and 13.8A, respectively. Under the same conditions, when the number of grounding locations was reduced, the combined resistance as well as induced voltage and current showed a tendency to increase. When all 7 electric poles were grounded with a ground resistance of less than $100\Omega$, the combined resistance of the line was $14.9\Omega$. When an average current of 236A was applied, the average induced voltage and current of the 'A' phase calculated were 1,068V and 15.6A, respectively. That is, in this case, only the combined resistance was greater than when all 7 electrical poles were grounded, and the induced voltage and current were reduced. Therefore, it is thought that even though ground resistance is slightly higher under a construction environment with the same conditions, it is advantageous to ground all electric poles to ensure system safety.

Application of Intelligent Technique for the Efficient Operation of the Flexible Manufacturing System (유연생산시스템의 효율적 운용을 위한 지능적 기법의 적용에 관한 연구)

    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.1-15
    • /
    • 1999
  • This research involves the development and evaluation of a work flow control model for a type of flexible manufacturing system(FMS) called a flexible flow line(FFL). The control model can be considered as a kind of hybrid intelligent model in that it utilizes both computer simulation and neural network technique. Training data sets were obtained using computer simulation of typical FFL states. And these data sets were used to train the neural network model. The model can easily incorporate particular aspects of a specific FFL such as limited buffer capacity and dispatching rules used. It also dynamically adapts to system uncertainty caused by such factors as machine breakdowns. Performance of the control model is shown to be superior to the random releasing method and the Minimal Part Set(MPS) heuristic in terms of machine utilization and work-in-process inventory level.

  • PDF