• Title/Summary/Keyword: line capacity simulation

Search Result 164, Processing Time 0.037 seconds

Selecting the Critical Resources Using DBR on Multi-parameters (DBR 스케줄링에 있어 제약자원 선정에 관한 연구)

  • 서장훈;홍석묵;박명규
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.1
    • /
    • pp.131-139
    • /
    • 2002
  • Since introducing the "Theory of Constraints" by Goldratt, its effect was verified by lots of scholars, men of enterprise. These days it is also introducing and studying in this country with good results. The objective of this study is to show how to determine the constraint resources on DBR scheduling. Actually, previous studies based on the line which just think a load/capacity rate on doing scheduling. This study will show a scheduling method which reflects multi-parameters. It could be a standard to reflect real manufacturing surroundings. On calculating a priority of each resources, we classified factors with subjective and objective factors. And we propose a decision model to incorporate values assigned by a group of experts on different factors to select a critical resource. On deploying this model, SN ratio of Taguchi method for each of subjective and objective factors will be used. And we propose a procedure which is organized with 7 steps. To understand the logic, a numerical manufacturing simulation will be presented. This method is a incorporating decision model on determining the constraint on multi parameters with experts.h experts.

A Study on the Optimal Design of Production Flow Line with Buffer Storage (완충재고를 고려한 생산흐름라인의 최적설계에 관한 연구)

  • 이상도;김정자;이강우;서순근;이창섭
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.89-100
    • /
    • 1987
  • In this paper, we present the effect of buffer storage capacity un two-stage transfer lines in such a way as to introduce the production rate to be reduced which is called a Slowed Down(SD) state. A Markov model is used to establish a formulation for the analysis of the delays associated with the stage to be starved or blocked. Operating policies are proposed by analyzing the effect of the decision variables such as the production rates, the failure rates, buffer capacities and SD rates through computer simulation experiments.

  • PDF

Analysis of Series and Parallel Operation Characteristics using Physical Models of Power Devices (물리적인 전력소자 모델을 이용한 직$\cdot$병렬운전 특성 해석)

  • Yoon, Jae-Hak;Park, Gun-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.213-217
    • /
    • 2002
  • Power devices for high power drivers that need high switching speed (IGCT, HVIGBT) have been continuously developed. However, serial and parallel connections using several much cheaper, lower power capacity of devices than an expensive high power device are very useful methods in the aspect of cost down and high power application. Even the current and voltage unbalance problem is occurred at each devices. This unbalance characteristics are mainly caused by the differences of physical characteristics of each devices and the line inductance (stray inductance) of bus bars that consist of current path. This paper deals simulation analysis of serial connection of IGCTs and parallel connection of IGCTs using physical model of devices. And also, introduces the method to reduce the voltage and current unbalance problem.

  • PDF

Study on capacity calculation of regenerative inverter for DC electrified transit substation (직류전기철도변전소의 회생인버터 용량산정에 관한 연구)

  • Bae, C.H.;Han, M.S.;Kim, Y.G.;Jang, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1607-1609
    • /
    • 2005
  • This paper presents capability calculation methods for regenerative inverter in DC electrified transit system. The proposed method uses a train performance and power simulation tool to calculate the regenerative power generated in the DC substation and decide the capability of regenerative inverter. The capability of regenerative inverters for Seoul subway line 5, 6, 7, and 8 has been calculated.

  • PDF

Energy-Efficient Last-Level Cache Management for PCM Memory Systems

  • Bahn, Hyokyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.188-193
    • /
    • 2022
  • The energy efficiency of memory systems is an important task in designing future computer systems as memory capacity continues to increase to accommodate the growing big data. In this article, we present an energy-efficient last-level cache management policy for future mobile systems. The proposed policy makes use of low-power PCM (phase-change memory) as the main memory medium, and reduces the amount of data written to PCM, thereby saving memory energy consumptions. To do so, the policy keeps track of the modified cache lines within each cache block, and replaces the last-level cache block that incurs the smallest PCM writing upon cache replacement requests. Also, the policy considers the access bit of cache blocks along with the cache line modifications in order not to degrade the cache hit ratio. Simulation experiments using SPEC benchmarks show that the proposed policy reduces the power consumption of PCM memory by 22.7% on average without degrading performances.

Novel Adaptive Virtual Impedance-based Droop Control for Parallel Operation of AC/DC Converter for DC Distribution (새로운 가상 임피던스 선정기법 기반의 적응 드룹을 이용한 직류배전용 AC/DC 컨버터의 병렬운전)

  • Lee, Yoon-Seong;Kang, Kyung-Min;Choi, Bong-Yeon;Kim, Mi Na;Lee, Hoon;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.328-329
    • /
    • 2020
  • The AC/DC converter, which connects the AC grid to the DC grid in the microgrid, is a critical component in power sharing and stable operation. Sometimes the AC/DC converters are connected in parallel to increase the transmission and reception capacity. When connected in parallel, circulating current is generated due to line impedance difference or sensor error. As a result of circulating current, there is deterioration and loss in particular PCS(Power Conversion System). In this paper, we propose droop control with novel adaptive virtual impedance for reducing circulating current. Feasibility of proposed algorithm is verified by PowerSIM simulation.

  • PDF

Capacity Estimation Models for Work-zones Under Traffic Signal Influence and the Empirical Validation (신호영향권 하 도로공사구간에서의 용량산정모형 개발과 실증)

  • Shin, Chi-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • This paper focuses on the development of analytical models for estimating the changes in saturation flow rates (SFR) at the stop-lines of a signalized intersection due to the existence of nearby work-zones, and thereby calculating the prevailing capacity values for specific lane groups. Major changes were incorporated in the logics of previous models and significant revisions have been made to secure the accuracy and simplicity. Furthermore, much attention was paid to model validation by making comparisons to both extensive simulation results and empirical data from various sites. It was found that SFRs are highly sensitive to the location of work-zones, the distance to each work-zone from the stop-line of a concerned approach, the number of lanes open and closed, and the effective green time. Using such geometric and operating conditions that constitute work-zone environment, the proposed models successfully estimated SFR values with a miniscule margin of error.

Coupling Simulation with Multi-dimensional Models for River Flow (다차원 모형을 이용한 하천흐름 연계모의)

  • Ahn, Jung Min;Hur, Young Teck;Lyu, Siwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.137-147
    • /
    • 2013
  • It is essential to understand the hydraulic characteristics of rivers for increasing flood-control capacity and operating hydraulic structures efficiently. Multi-dimensional models can be the proper measures to obtain the detailed information on the hydraulic characteristics of rivers. But huge amount of data and time-consuming work have been the obstacle for applying multi-dimensional models. In this study, simulation technique with multi-dimensional model(EFDC), coupled with COSFIM and FLDWAV, has been developed and applied to the real river system for verification. Developed technique can offers spatial and grid unit information as well as line and section unit information from 1-D modeling. It is considered that the coupling simulation technique can provide useful hydraulic information for river management and treatment.

The Integrated Design and Analysis of Manufacturing Lines (I) - an Automated Modeling & Simulation System for Digital Virtual Manufacturing (제조라인 통합 설계 및 분석(I) - 디지털 가상생산 기술 적용을 위한 모델링 & 시뮬레이션 자동화 시스템)

  • Choi, SangSu;Hyeon, Jeongho;Jang, Yong;Lee, Bumgee;Park, Yangho;Kang, HyoungSeok;Jun, Chanmo;Jung, Jinwoo;Noh, Sang Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.138-147
    • /
    • 2014
  • In manufacturing companies, different types of production have been developed based on diverse production strategies and differentiated technologies. The production systems have become smart, factories are filled with unmanned manufacturing lines, and sustainable manufacturing technologies are under development. Nowadays, the digital manufacturing technology is being adopted and used in manufacturing industries. When this technology is applied, a lot of efforts, time and cost are required and training professionals in-house is limited. In this paper, we introduce e-FEED system (electronic based Front End Engineering and Design) that is the integrated design and analysis system for optimized manufacturing line development on virtual environment. This system provides the functions that can be designed easily using library and template based on standardized modules and analyzed automatically the logistic and capacity simulation by one-click and verified the result using visual reports. Also, we can review the factory layout using automatically created 3D virtual factory and increase the knowledge reuse by e-FEED system.

Reactive Power Control of Single-Phase Reactive Power Compensator for Distribution Line (배전선로용 단상 무효전력 보상기의 무효전력제어)

  • Sim, Woosik;Jo, Jongmin;Kim, Youngroc;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • In this study, a novel reactive power control scheme is proposed to supply stable reactive power to the distribution line by compensating a ripple voltage of DC link. In a single-phase system, a magnitude of second harmonic is inevitably generated in the DC link voltage, and this phenomenon is further increased when the capacity of DC link capacitor decreases. Reactive power control was performed by controlling the d-axis current in the virtual synchronous reference frame, and the voltage control for maintaining the DC link voltage was implemented through the q-axis current control. The proposed method for compensating the ripple voltage was classified into three parts, which consist of the extraction unit of DC link voltage, high pass filter (HPF), and time delay unit. HPF removes an offset component of DC link voltage extracted from integral, and a time delay unit compensates the phase leading effect due to the HPF. The compensated DC voltage is used as feedback component of voltage control loop to supply stable reactive power. The performance of the proposed algorithm was verified through simulation and experiments. At DC link capacitance of 375 uF, the magnitude of ripple voltage decreased to 8 Vpp from 74 Vpp in the voltage control loop, and the total harmonic distortion of the current was improved.