• Title/Summary/Keyword: line bundles over a real torus

Search Result 1, Processing Time 0.015 seconds

POLARIZED REAL TORI

  • Yang, Jae-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.269-331
    • /
    • 2015
  • For a fixed positive integer g, we let $\mathcal{P}_g=\{Y{\in}\mathbb{R}^{(g,g)}{\mid}Y=^tY>0\}$ be the open convex cone in the Euclidean space $\mathbb{R}^{g(g+1)/2}$. Then the general linear group GL(g, $\mathbb{R}$) acts naturally on $\mathcal{P}_g$ by $A{\star}Y=AY^tA(A{\in}GL(g,\mathbb{R}),\;Y{\in}\mathcal{P}_g)$. We introduce a notion of polarized real tori. We show that the open cone $\mathcal{P}_g$ parametrizes principally polarized real tori of dimension g and that the Minkowski modular space 𝔗g = $GL(g,\mathbb{Z}){\backslash}\mathcal{P}_g$ may be regarded as a moduli space of principally polarized real tori of dimension g. We also study smooth line bundles on a polarized real torus by relating them to holomorphic line bundles on its associated polarized real abelian variety.