• Title/Summary/Keyword: limiting processes

Search Result 140, Processing Time 0.025 seconds

An Empirical Central Limit Theorem for the Kaplan-Meier Integral Process on [0,$\infty$)

  • Bae, Jong-Sig
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.2
    • /
    • pp.231-243
    • /
    • 1997
  • In this paper we investigate weak convergence of the intergral processes whose index set is the non-compact infinite time interval. Our first goal is to develop the empirical central limit theorem as random elements of [0, .infty.) for an integral process which is constructed from iid variables. In developing the weak convergence as random elements of D[0, .infty.), we will use a result of Ossiander(4) whose proof heavily depends on the total boundedness of the index set. Our next goal is to establish the empirical central limit theorem for the Kaplan-Meier integral process as random elements of D[0, .infty.). In achieving the the goal, we will use the above iid result, a representation of State(6) on the Kaplan-Meier integral, and a lemma on the uniform order of convergence. The first result, in some sense, generalizes the result of empirical central limit therem of Pollard(5) where the process is regarded as random elements of D[-.infty., .infty.] and the sample paths of limiting Gaussian process may jump. The second result generalizes the first result to random censorship model. The later also generalizes one dimensional central limit theorem of Stute(6) to a process version. These results may be used in the nonparametric statistical inference.

  • PDF

Selection of Surfactant and Operation Scheme for Improved Efficiency of In-situ Soil Flushing Process (원위치 토양세척 공정의 효율향상을 위한 세제선정과 운전기법)

  • Son, Bong-Ho;Lim, Bong-Su;Oa, Seong-Wook;Lee, Byung-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.824-830
    • /
    • 2006
  • Several tests were conducted to optimize the design parameters of ln-situ soil flushing processes for diesel contaminated soil. According to the batch extraction test for three anionic surfactants evaluation, Calgonit limiting bubble occurrence was selected for its higher oil cleaning efficiency. After optimum surfactant selection, there were many sets of column flushing test. Over 70% of BTEX was removed in this surfactant dose with 400% of soil volume. In the case of no surfactant addition flushing in column, so called "blank flushing test", BTEX removal rate was 64%. But when we reused the effluent for the cleaning solution, the removal rate was decreased to 46.9%. This result showed reabsorption of oil occurred on the soil. With the addition of Calgonit solution to the diesel contaminated column, BTEX was removed up to 98.9% during the first flushing and 99.4% for the second recirculation flushing. In microcosm tests, diesel contaminated soils were cleaned by both surfactant flushing and biological activities. In anoxic condition, nitrate was used as an electron acceptor while the surfactant and the oil were used an electron donor. BTEX removal efficiency could be achieved up to 80% by biological degradation.

Electron microscopic study on the insulin-, glucagon-, somatostatin-, and pancreatic polypeptide secreting cells in Korean native goat (한국재래산양 췌장의 insulin, glucagon, somatostatin 및 pancreatic polypeptide 분비세포에 관한 전자현미경적 연구)

  • Lee, Heungshik S.;Lee, In-se;Kang, Tae-cheon;Won, Moo-ho;Yi, Seong-joon
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.1
    • /
    • pp.55-65
    • /
    • 1995
  • Ultrastructures of pancreatic endocrine cells containing glucagon, insulin, somatosratin and pancreatic polypeptide were studied in the pancreas of the Korean native goat by immunohistochemical and elecron microscopy. Glucagon immunoreatctive cells were round or fusiform in shape and contained secretory granules of 200-260 nm in diameter. The secretory granules were high in electron density and had a halo between the limiting membrane and the central granule core. Insulin immunoreactive cells were round or oval in shape, and contained various sizes of secretory granules from 135 to 300 nm in diameter. The secretory granules were low or moderate electron density and had a variform halo. Somatostatin immunoreactive cells were elliptical or fusiform shape with cytoplasmic processes. They contained the secretory granules of 140-320 nm with moderate electron densities. Pancreatic polypeptide immunoreactive cells were elliptical or fusiform and contained small secretory granules with high electron densities. The secretory granules were 120-230 nm in diameter and the least in number.

  • PDF

Clinical evaluation of a rapid diagnostic test kit for detection of canine coronavirus

  • Yoon, Seung-Jae;Seo, Kyoung-Won;Song, Kun-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.1
    • /
    • pp.27-31
    • /
    • 2018
  • Canine coronavirus is a single-stranded RNA virus that causes enteritis in dogs of any age. Coronaviral enteritis is seldom definitively diagnosed, since it is usually much less severe than many other types of enteritis and is self-limiting. Conventional diagnostics for the canine coronaviral enteritis such as polymerase chain reaction (PCR), virus isolation, and electron microscopic examination are inappropriate for small animal clinics due to the complicated experimental processes involved. Therefore, a commercially available lateral flow test kit based on chromatographic immunoassay techniques was tested to evaluate its performance as a first-line diagnostic test kit that could be used in clinics. The coronavirus antigen test kit detected canine coronavirus-infected dogs with 93.1% sensitivity and 97.5% specificity. The detection limit of the test kit was between $1.97{\times}10^4/mL$ and $9.85{\times}10^3/mL$ for samples with a 2-fold serial dilution from $1.25{\times}10^6\;TCID_{50}$ ($TCID_{50}$, 50% tissue culture infectious dose). Additionally, the test kit had no cross-reactivity with canine parvovirus, distemper virus, or Escherichia coli. Overall, the commercially available test kit showed good diagnostic performance in a clinical setting, with results similar to those from PCR, confirming their potential for convenient and accurate use in small animal clinics.

Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells (GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성)

  • Park, Jaeho;Lee, Kyungju;Song, Sangwoo;Jo, Seulki;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF

Estimation of Evapotranspiration in a Forest Watershed in Central Korea (중부(中部) 산림(山林) 지역(地域)의 증발산량(蒸發散量) 추정(推定))

  • Kim, Jesu
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.86-92
    • /
    • 1999
  • Evapotranspiration is one of important variables affecting ecosystem processes such as vegetation distribution and growth. It acts as a limiting factor for natural water resource management. The transpiration of vegetation is mainly determined by climatic factors. The lower slope of the study area was densely forested with Pinus densiflora S. et Z. of 8 m height, and the upper slope was covered with poorly grown Pinus densiflora S. et Z. and Quercus trees. The amount of evapotranspiration was estimated to 590.3 mm/yr by annual water budget method. The canopy resistance of Penman-Monteith model was determined as 99 s/m. Seasonal evapotranspiration can be estimated with the calculated evaporation and the canopy resistance. The amount of evapotranspiration peaked in May. That is considered from both the direct evaporation of intercepted rainfall and the transpiration of vegetation during the dry spring season.

  • PDF

Mechanisms of herbicide resistance in weeds

  • Bo, Aung Bo;Won, Ok Jae;Sin, Hun Tak;Lee, Jeung Joo;Park, Kee Woong
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • In major field crops, synthetic herbicides have been used to control weeds worldwide. Globally, herbicide resistance in weeds should be minimized because it is a major limiting factor for food security. Cross resistance can occur with herbicides within the same or in different herbicide families and with the same or different sites of action. Multiple resistance refers to evolved mechanisms of resistance to more than one herbicide (e.g., resistance to both ALS-inhibitors and ACCase-inhibitors) and this resistance was brought about by separate selection processes. Target site resistance could occur from changes at the biochemical site of action of one herbicide. Non target site resistance occurs through mechanisms which reduce the number of herbicide molecules that reach the herbicide target site. There are currently 480 unique cases (species ${\times}$ site of action) of herbicide resistance globally in 252 plant species (145 dicots and 105 monocots). To date, resistance in weeds has been reported to 161 different herbicides, involving 23 of the 26 known herbicide sites of action. Finally, it can be concluded that we can protect crops associated to herbicide resistant weeds by applications of biochemical, genetic and crop control strategies.

DEVELOPMENT OF MARS-GCR/V1 FOR THERMAL-HYDRAULIC SAFETY ANALYSIS OF GAS-COOLED REACTOR SYSTEMS

  • LEE WON-JAE;JEONG JAR-JUN;LEE SEUNG-WOOK;CHANG JONGHWA
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.587-594
    • /
    • 2005
  • In an effort to develop a thermal-hydraulic (TH) safety analysis code for Gas-cooled Reactors (GCRs), the MARS code, which was primarily developed for TH analysis of water reactor systems, has been extended here for application to GCRs. The modeling requirements of the system code were derived from a review of major processes and phenomena that are expected to occur during normal and accident conditions of GCRs. Models fur code improvement were then identified through a review of existing MARS code capability. Among these, the following priority models necessary fur the analysis of limiting high and low pressure conduction cooling events were evaluated and incorporated in MARS-GCR/V1 : 1) Helium (He) and Carbon Dioxide ($CO_2$) as main system fluids, 2) gas convection heat transfer, 3) radiation heat transfer, and 4) contact heat transfer models. Each model has been assessed using various conceptual problems for code-to-code benchmarks and it was demonstrated that MARS-GCR/V1 is capable of capturing the relevant phenomena. This paper describes the models implemented in MARS-GCR/V1 and their verification and validation results.

Equilibrium and Kinetic Studies of the Biosorption of Dissolved Metals on Bacillus drentensis Immobilized in Biocarrier Beads

  • Seo, Hanna;Lee, Minhee;Wang, Sookyun
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out to quantify the biosorption of Pb(II) and Cu(II) by the biocarrier beads. The parameters obtained from the thermodynamic analysis revealed that the biosorption of Pb(II) and Cu(II) by biomass immobilized in biocarrier beads was a spontaneous, irreversible, and physically-occurring adsorption phenomenon. Comparing batch experimental data to various adsorption isotherms confirmed that Koble-Corrigan and Langmuir isotherms well represented the biosorption equilibrium and the system likely occurred through monolayer sorption onto a homogeneous surface. The maximum adsorption capacities of the biocarrier beads for Pb(II) and Cu(II) were calculated as 0.3332 and 0.5598 mg/g, respectively. For the entire biosorption process, pseudo-second-order and Ritchie second-order kinetic models were observed to provide better descriptions for the biosorption kinetic data. Application of the intra-particle diffusion model showed that the intraparticle diffusion was not the rate-limiting step for the biosorption phenomena. Overall, the dead biomass immobilized in polysulfone biocarrier beads effectively removed metal ions and could be applied as a biosorbent in wastewater treatment.

Development of Environmental Stress-Tolerant Plants by Gene Manipulation of Antioxidant Enzymes

  • Kwon, Suk-Yoon;Lee, Haeng-Soon;Kwak, Sang-Soo
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • Oxidative stress is one of the major limiting factor in plant productivity. Reactive oxygens species (ROS) generated during metabolic processes damage cellular functions and consequently lead to disease, senescence and cell death. Plants have evolved an efficient defense system by which the ROS is scavenged by antioxidant enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX). Attempts to reduce oxidative damages under the stress conditions have included the manipulation of 갠 scavenging enzymes by gene transfer technology. Increased SOD activities of transgenic plants lead to increased resistance against oxidative stresses derived from methyl viologen (MV), and from photooxidative damage caused by high light and low temperature. Transgenic tobacco plants overexpressing APX showed reduced damage following either MV treatment of photooxidative treatment. Overexpression of glutathion reductase (GR) leads to increase in pool of ascorbate and GSH, known as small antioxidant molecules. These results indicate through overexpression of enzymes involved in ROS-scavenging could maintain or improve the plant productivities under environment stress condition. In this study, the rational approaches to develop stress-tolerant plants by gene manipulation of antioxidant enzymes will be introduced to provide solutions for the global food and environmental problems in the $21^\textrm{st}$ century.

  • PDF