• Title/Summary/Keyword: limited sensor

Search Result 1,023, Processing Time 0.02 seconds

A Novel Routing Structure Method For Data Aggregation Scheduling in Battery-Free Wireless Sensor Networks (무배터리 무선 센서 네트워크에서의 데이터 집적 스케줄링에 관한 새로운 라우팅 구조 방법)

  • Vo, Van-Vi;Kim, Moonseong;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.94-97
    • /
    • 2022
  • The emerging energy harvesting technology, which has been successfully integrated into Wireless Sensor Networks, enables sensor batteries to be charged using renewable energy sources. In the meantime, the problem of Minimum Latency Aggregation Scheduling (MLAS) in battery-powered WSNs has been well studied. However, because sensors have limited energy harvesting capabilities, captured energy is limited and varies greatly between nodes. As a result, all previous MLAS algorithms are incompatible with Battery-Free Wireless Sensor Networks (BF-WSNs). We investigate the MLAS problem in BF-WSNs in this paper. To make the best use of the harvested energy, we build an aggregation tree that leverages the energy harvesting rates of the sensor nodes with an intuitive explanation. The aggregation tree, which determines sender-receiver pairs for data transmission, is one of the two important phases to obtain a low data aggregation latency in the BF-WSNs.

Novel upper gastrointestinal bleeding sensor capsule: a first human feasibility and safety trial

  • Lukas Bajer;Marvin Ryou;Christopher C. Thompson;Pavel Drastich
    • Clinical Endoscopy
    • /
    • v.57 no.2
    • /
    • pp.203-208
    • /
    • 2024
  • Background/Aims: Upper gastrointestinal bleeding (UGIB) is the most common GI condition requiring hospitalization. The present study aimed to evaluate the safety and feasibility of using the PillSense system (EnteraSense Ltd.), a novel diagnostic tool designed for the rapid in vivo detection of UGIB, in human volunteers. Methods: In the present study, 10 volunteers swallowed a PillSense capsule, followed by 2 servings of an autologous blood preparation. Participants were monitored for capsule passage, overall tolerability of the procedure, and adverse events. Results: The procedure was completed per the protocol established in the present study in 9/10 cases. In 9 of the subjects, after capsule ingestion, the device indicated the absence of blood with sensor output values of 1. After the ingestion of the first blood mixture, the sensor outputs of all devices increased to a range from 2.8 to 4, indicating that each sensor capsule detected blood. The sensor output remained within that range after the ingestion of the second mixture; however, in one case, the baseline capsule signal was positive, because of a preexisting condition. The passage of the capsule was verified in all patients, and no adverse events were reported. Conclusions: The first trial of the PillSense system in human subjects demonstrated the feasibility, safety, and tolerability of utilizing this product as a novel, noninvasive, and easy-to-use triage tool for the diagnosis of patients suspected of having UGIB.

Performance Evaluation of Distributed Clustering Protocol under Distance Estimation Error

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.11-15
    • /
    • 2018
  • The application of Wireless Sensor Networks requires a wise utilization of limited energy resources. Therefore, a wide range of routing protocols with a motivation to prolong the lifetime of a network has been proposed in recent years. Hierarchical clustering based protocols have become an object of a large number of studies that aim to efficiently utilize the limited energy of network components. In this paper, the effect of mismatch in parameter estimation is discussed to evaluate the robustness of a distanced based algorithm called distributed clustering protocol in homogeneous and heterogeneous environment. For quantitative analysis, performance simulations for this protocol are carried out in terms of the network lifetime which is the main criteria of efficiency for the energy limited system.

Energy Efficient Data Transmission Algorithms in 2D and 3D Underwater Wireless Sensor Networks (2차원 및 3차원 수중 센서 네트워크에서 에너지 효율적인 데이터전송 알고리즘)

  • Kim, Sung-Un;Park, Seon-Yeong;Cheon, Hyun-Soo;Kim, Kun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1657-1666
    • /
    • 2010
  • Underwater wireless sensor networks (UWSN) need stable efficient data transmission methods because of environmental characteristics such as limited energy resource, limited communication bandwidth, variable propagation delay and so on. In this paper, we explain an enhanced hybrid transmission method that uses a hexagon tessellation with an ideal cell size in a two-dimensional underwater wireless sensor network model (2D) that consists of fixed position sensors on the bottom of the ocean. We also propose an energy efficient sensing and communication coverage method for effective data transmission in a three-dimensional underwater wireless sensor network model (3D) that equips anchored sensors on the bottom of the ocean. Our simulation results show that proposed methods are more energy efficient than the existing methods for each model.

The Routing Algorithm for Wireless Sensor Networks with Random Mobile Nodes

  • Yun, Dai Yeol;Jung, Kye-Dong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.38-43
    • /
    • 2017
  • Sensor Networks (WSNs) can be defined as a self-configured and infrastructure-less wireless networks to monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants and to cooperatively pass their data through the network to a main location or base-station where the data can be observed and analyzed. Typically a wireless sensor network contains hundreds of thousands of sensor nodes. The sensor nodes can communicate among themselves using radio signals. A wireless sensor node is equipped with sensing and computing devices, radio transceivers and power components. The individual nodes in a wireless sensor network (WSN) are inherently resource constrained: they have limited processing speed, storage capacity, communication bandwidth and limited-battery power. At present time, most of the research on WSNs has concentrated on the design of energy- and computationally efficient algorithms and protocols In order to extend the network life-time, in this paper we are looking into a routing protocol, especially LEACH and LEACH-related protocol. LEACH protocol is a representative routing protocol and improves overall network energy efficiency by allowing all nodes to be selected to the cluster head evenly once in a periodic manner. In LEACH, in case of movement of sensor nodes, there is a problem that the data transmission success rate decreases. In order to overcome LEACH's nodes movements, LEACH-Mobile protocol had proposed. But energy consumption increased because it consumes more energy to recognize which nodes moves and re-transfer data. In this paper we propose the new routing protocol considering nodes' mobility. In order to simulate the proposed protocol, we make a scenario, nodes' movements randomly and compared with the LEACH-Mobile protocol.

Energy-Efficient Real-Time Task Scheduling for Battery-Powered Wireless Sensor Nodes (배터리 작동식의 무선 센서 노드를 위한 에너지 효율적인 실시간 태스크 스케줄링)

  • Kim, Dong-Joo;Kim, Tae-Hoon;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1423-1435
    • /
    • 2010
  • Building wireless sensor networks requires a constituting sensor node to consider the following limited hardware resources: a small battery lifetime limiting available power supply for the sensor node, a low-power microprocessor with a low-performance computing capability, and scarce memory resources. Despite such limited hardware resources of the sensor node, the sensor node platform needs to activate real-time sensing, guarantee the real-time processing of sensing data, and exchange data between individual sensor nodes concurrently. Therefore, in this paper, we propose an energy-efficient real-time task scheduling technique for battery-powered wireless sensor nodes. The proposed energy-efficient task scheduling technique controls the microprocessor's operating frequency and reduces the power consumption of a task by exploiting the slack time of the task when the actual execution time of the task can be less than its worst case execution time. The outcomes from experiments showed that the proposed scheduling technique yielded efficient performance in terms of guaranteeing the completion of real-time tasks within their deadlines and aiming to provide low power consumption.

An Efficient Data Dissemination Protocol for Cluster-based Wireless Sensor Networks (클러스터 기반의 무선 센서네트워크에서 통신량을 줄인 데이터 보급방법)

  • Cho, Ji-Eun;Choe, Jong-Won
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.222-230
    • /
    • 2009
  • A sensor network is an important element of the ubiquitous and it consists of sensor fields that contain sensor nodes and sink nodes that collect data from sensor nodes. Since each sensor node has limited resources, one of the important issues covered in the past sensor network studies has been maximizing the usage of limited energy to extend network lifetime. However, most studies have only considered fixed sink nodes, which created various problems for cases with multiple mobile sink nodes. Accordingly, while maintaining routes to mobile sink nodes, this study aims to deploy the hybrid communication mode that combines single and multi-hop modes for intra-cluster and inter-cluster transmission to resolve the problem of failed data transmission to mobile sink nodes caused by disconnected routes. Furthermore, a 2-level hierarchical routing protocol was used to reduce the number of sensor nodes participating in data transmission, and cross-shape trajectory forwarding was employed in packet transmission to provide an efficient data dissemination method.

A CMOS Digital Image Sensor with a Feature-Driven Attention Module (특징기반 주의 모듈을 사용하는 CMOS 디지털 이미지 센서)

  • Park, Min-Chul;Cheoi, Kyung-Joo;Hamamoto, Takayuki
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.189-196
    • /
    • 2008
  • In this paper, a CMOS digital image sensor, which consists of A/D conversion, motion estimation circuits, and an attention module for ROI (Region of Interest) detection is presented. The functions of A/D conversion and motion estimation are implemented by $0.6{\mu}m$ CMOS processing circuit as hardware, and the attention module is implemented outside the circuit as software currently. Attention modules are taken to improve limited applications of the smart image sensor. The current smart image sensor responses to the changes of intensity, and uses the integration time to estimate motion. Therefore it is limited in its applications. To make up for inherent property of the sensor from circuit design and extend its applications we decide to introduce perception solutions to the image sensor. Attention modules for still and moving images are employed to achieve such purposes. The suggested approach makes the smart image sensor available with additional functions for such cases that motion estimation or intensity changes are not observed. Experimental result shows the usefulness and extension of the image sensor.

Adaptive Pressure Sensor with High Sensitivity and Large Bandwidth Based on Gallium Microdroplet-elastomer Composite (갈륨 미세입자 탄성 복합체 기반 고민감도와 광대역폭을 갖는 가변 강성 압력센서)

  • Simok, Lee;Sang-Hyuk, Byun;Steve, Park;Joo Yong, Sim;Jae-Woong, Jeong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.423-427
    • /
    • 2022
  • A pressure sensor that mimics the sensing ability of human skin has emerged as high-profile technology because it shows remarkable applications in numerous fields such as robotics, human health monitoring, and artificial prosthetics. Whereas recent pressure sensors have achieved high sensitivity similar to that of human skin, they still show limited detection bandwidth. Moreover, once these e-skin are fabricated, their sensitivity and stiffness are fixed; therefore, they can be used for only limited applications. Our study proposes a new adaptive pressure sensor built with uniform gallium microdroplet-elastomer composite. Based on the phase transition of gallium microdroplets, the proposed sensor undergoes mode transformation, enabling it to have a higher sensitivity and wider detection bandwidth compared with those of human skin. In addition, we succeeded in extending a single adaptive pressure sensor to sensor arrays based on its high uniformity, reproducibility, and large-scale manufacturability. Finally, we designed an adaptive e-skin with the sensor array and demonstrated its applications on health monitoring tasks including blood pulse and body weight measurements.

Recursive PCA-based Remote Sensor Data Management System Applicable to Sensor Network

  • Kim, Sung-Ho;Youk, Yui-Su
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.126-131
    • /
    • 2008
  • Wireless Sensor Network(WSNs) consists of small sensor nodes with sensing, computation, and wireless communication capabilities. It has new information collection scheme and monitoring solution for a variety of applications. Faults occurring to sensor nodes are common due to the limited resources and the harsh environment where the sensor nodes are deployed. In order to ensure the network quality of service it is necessary for the WSN to be able to detect the faulty sensors and take necessary actions for the reconstruction of the lost sensor data caused by fault as earlier as possible. In this paper, we propose an recursive PCA-based fault detection and lost data reconstruction algorithm for sensor networks. Also, the performance of proposed scheme was verified with simulation studies.