• Title/Summary/Keyword: limit strength

Search Result 1,254, Processing Time 0.025 seconds

Development Length Effects of High Strength Headed Bar (고강도 확대머리 이형철근의 정착길이 효과에 관한 실험적 연구)

  • Moon, Jeong-Ho;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.75-82
    • /
    • 2015
  • An experimental study has been carried out to examine development length effects for high strength headed deformed bars. Current design codes limit the specified yield strength of headed bars to 400 MPa. Such the limit is due to the lack of experimental studies on headed bars made of high strength materials. Thus a test program was planed with headed bars with the yield strength of 600 MPa. The threaded head type with head shapes of round plate and circular cone was selected in this study. The experimental variables were development length, number of bars, and head shape. Specimens were classified into L-type and S-type depending on the development length. The development length of L-type was computed according to the design code without considering the limit. S-type specimens had shorter development lengths than the L-type. Further classification was made depending on the shape of heads. A-types have the head shape of round plate and B-types have the shape of circular cone. Three L-type specimens were fabricated with the variable of number of bars (1, 2, and 3). Four specimens for each of SA and SB types were made with development lengths of 50%, 45%, 40%, and 35% compared with L-type. Pullout tests was carried out with 11 specimens. The test results were compared with computed strengths with the design code equations (Appendix II). Based the current studies, it can be said that high strength headed deformed bars used in this study be able to provide such strengths computed with the current design code without considering the yield strength limit.

Estimation of Fatigue Life in Butt-Welded Zone of SM45C Steel Rod (강 봉(SM45C) 맞대기 용접부의 피로수명 평가)

  • Oh, Byung-Duck;Lee, Yong-Bok
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • SM45C steel rods being used generally for power transmission shafts and machine components was selected and welded by Butt-GMAW(Gas Metal Arc Welding) method. An estimation of fatigue life was studied by constructing S-N curve. Fatigue strength of base metal zone showed higher values than one of weld zone in low cycles between $10^4$ and $10^6$cycles. However, significant decrease in fatigue strength of base metal was found around $10^6$cycles, which were almost same as one of heat affected zone. This decrease was attributed that initial residual stress of the steel rods distributed by drawing process was diminished by continually applied load, and resulted in softening of base metal. The fatigue limit of the weld zone was highest in the boundary between deposited metal zone and heat affected zone, and followed by in the order of deposited metal zone, base metal zone, and heat affected zone. Based on these results, it is revealed that the stress for safety design of machine components using SM45C butt-welded steel rods must be selected within the region of the lowest fatigue limit of heat affected zone.

Study on the Cold Formability of Drawn Dual-Phase Steels (신선 가공된 이상 조직강의 냉간 성형성에 대한 연구)

  • 박경수;최상우;이덕락;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.269-273
    • /
    • 2003
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

  • PDF

An Experimental Investigation of Limit Loads and Fatigue Properties of Spot Welded Specimens (점용접시편의 극한하중과 피로특성에 관한 실험적 고찰)

  • Lee, Hyeong-Il;Kim, Nam-Ho;Lee, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.38-51
    • /
    • 2000
  • The study on the mechanical behavior of a spot-welded specimen is largely divided into the quasi-static overload failure analysis and the fatigue failure prediction. The main issue in an overload analysis is to examine the critical loads, thereby providing a generalized overload failure criterion. As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. In this study, we first present the limit loads of 4 representative types of single spot-welded specimens in terms of the base metal yield strength and specimen geometries. Recasting the load vs. fatigue life relationships experimentally, obtained here, we then predict the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key, role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot.

Experiments on Longitudinal Joints of Precast Composite Hollow Slabs (프리캐스트 합성 중공바닥판의 교축방향 이음부에 대한 실험)

  • Shim, Chang-Su;Chung, Young-Soo;Kim, Dae-Ho;Min, Jin;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.14-17
    • /
    • 2004
  • A prefabricated composite hollow slab with perforated I-beams was suggested for the replacement of deteriorated concrete decks or the construction of new composite bridges with long-span slabs. Composite slabs with embedded I-beams have considerably higher stiffness and strength. For the application of prefabricated composite slabs to bridges, joints between slabs should satisfy the requirements of the ultimate limit state and the serviceability limit state. In this paper, three types of the detail for loop joints were selected and their structural performance in terms of strength and crack control was investigated through static tests on continuous composite slabs. A main parameter was the detail of the joint, such as an ordinary loop joint and loop joint with additional reinforcements. Even though there was no connection of the steel beams at the joints, the loop joints showed good performance in ultimate strength. In terms of crack control, the loop joint with additional reinforcements showed better performance. In ultimate limit state, the continuous composite slabs showed good moment redistribution and ductility.

  • PDF

Limit analysis of 3D rock slope stability with non-linear failure criterion

  • Gao, Yufeng;Wu, Di;Zhang, Fei;Lei, G.H.;Qin, Hongyu;Qiu, Yue
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.59-76
    • /
    • 2016
  • The non-linear Hoek-Brown failure criterion has been widely accepted and applied to evaluate the stability of rock slopes under plane-strain conditions. This paper presents a kinematic approach of limit analysis to assessing the static and seismic stability of three-dimensional (3D) rock slopes using the generalized Hoek-Brown failure criterion. A tangential technique is employed to obtain the equivalent Mohr-Coulomb strength parameters of rock material from the generalized Hoek-Brown criterion. The least upper bounds to the stability number are obtained in an optimization procedure and presented in the form of graphs and tables for a wide range of parameters. The calculated results demonstrate the influences of 3D geometrical constraint, non-linear strength parameters and seismic acceleration on the stability number and equivalent strength parameters. The presented upper-bound solutions can be used for preliminary assessment on the 3D rock slope stability in design and assessing other solutions from the developing methods in the stability analysis of 3D rock slopes.

A Study on the Cold Formability of Drawn Dual-Phase Steels (신선 가공된 이상 조직강의 냉간 성형성에 대한 연구)

  • 박경수;최상우;이덕락;이종수
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.84-89
    • /
    • 2004
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

Shear Strength Prediction by Modified Plasticity Theory for High-Strength Concrete Deep Beams

  • Cho, Soon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.494-497
    • /
    • 2004
  • This paper presents the analysis results predicted by the upper bound approach in the limit analysis of concrete incorporating the original plastic and crack sliding solutions for short high-strength concrete beams that varied the compressive strength of concrete, and the shear span-to-depth and vertical shear reinforcement ratios. The significance of the distance away from the support to define the location where the yield line starts and the properties of cracked concrete, particularly related to high-strength concrete, is identified.

  • PDF

Effect of Ion-nitriding on Fatigue Strength (피로강도에 미치는 이온실화처리의 영향)

  • Kang, Moo-Jin;Lee, Chung-Oh
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.3
    • /
    • pp.98-103
    • /
    • 1979
  • The fatigue limit of an ion-nitrided steel was investigated experimentally and analytically. It is found that fatigue limit can singificantly be increased by ion-nitriding, and that the case depth is the most important parameter which determines the fatigue limit. The data indicate that fatigue limit increases with the case depth as well as the surface hardness of the nitrided steel. The fracrographs of the fracture surfaces taken by a scanning electron microscope show that the fisch-eye is located at the subsurface of failed specimens. Assuming that crack propagates from the subsurface inclusions, an analytical model is proposed to predict the fatigue limit. Taking into account the stress distrbution of a nitrided specimen, fatigue limit is predicted as a function of the case depth. The proposed semiemprical formula agrees satisfactorily with the experimental data obtained from rotating beam fatigue testing.

The Maximum Strength of Stainless Steel Rectangular Hollow Section Columns and Beam-Columns (스테인리스 각형강관기둥의 최대내력)

  • Lee, Myung Jae;Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.73-82
    • /
    • 2005
  • The objective of this study is to investigate the maximum strength of stainless steel rectangular hollow section columns and beam-columns by using numerical analysis. Stress-strain relationships are modeled based on coupon tests results, and their influences on the maximum strength of columns and beam-columns are discussed. The analysis results are compared with the formula for the limit state design code of steel structures. It is ascertained that the design code for the stainless steel is needed to use stainless steel for the members of architectural structures.