• Title/Summary/Keyword: limestone cavities

검색결과 43건 처리시간 0.024초

A Time-Lapse Microgravity for Grout Monitoring (그라우팅 전후의 시간차 고정밀 중력탐사)

  • Park, Yeong-Sue;Rim, Hyoung-Rae;Lim, Mu-Taek;Koo, Sung-Bon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.101-106
    • /
    • 2007
  • A time-lapse microgravity survey on a newly widen road at Muan, where limestone cavities are developed, for monitoring the change of the subsurface density distribution before and after grouting. Microgravity monitoring is identified as a quick, easy and cost effective. But, it requires strict data acquisition and quality control due to the differences of conditions at measurements. The survey was carried out two times, that is, October 2005 and September 2006. The data were adjusted for reducing the effects due to the different condition of each survey. The processed data acquired in 2005 and 2006 were inverted into the subsurface density distributions. They show the change and development of density structure during the lapsed time, which implies the effects of grouting.

  • PDF

Application of integrated geophysical methods to investigate the cause of ground subsidence of the highly civilized area

  • Kim Jung-Ho;Yi Myeong-Jong;Hwang Se-Ho;Song Yoonho;Cho Seong-Jun;Lee Seong-Kon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.410-415
    • /
    • 2003
  • Ground subsidence has occurred in the downtown of Muan-eup in Korea. Integrated geophysical survey, including two-dimensional resistivity, CSMT(Controlled source magnetotelluric), magnetic, borehole logging, GPR and resistivity tomography, has been conducted to investigate the cause of subsidence and ground conditions. Since the target area is in the city downtown, there were no spaces for surface geophysical methods. To get regional geology and to facilitate the detailed geophysical interpretation in the survey area, two-dimensional resistivity, CSMT and magnetic surveys have been applied in the outer region of the downtown. From these results, we could accurately define the Gwangju fault system and estimate the geologic conditions in the downtown. For the detailed survey of the downtown area, resistivity tomography and borehole logging data have been acquired using a few tens of densely located boreholes. Among these survey results, borehole logging data provided the guide to classification of the rock type and we could define the geologic boundary of granite and limestone formations. From the resistivity tomograms of 42 sections, which are densely located enough to be interpreted in a three-dimensional manner, we could delineate the possible weak zones or cavities in the limestone formations. In particular, resistivity tomograms in the subsided area showed the real image of ground subsidence. The map of hazardous zone has been derived from the joint interpretation of these survey results and we could provide the possible reinforcement strategy in this area.

  • PDF

Analysis of Geological Factors for Risk Assessment in Deep Rock Excavation in South Korea (한국의 대심도 암반 굴착 위험도 산정을 위한 인자 분석)

  • Ihm, Myeong Hyeok;Lee, Hana
    • Tunnel and Underground Space
    • /
    • 제31권4호
    • /
    • pp.211-220
    • /
    • 2021
  • Tunnel collapse often occurs during deep underground tunneling (> 40 m depth) in South Korea. Natural cavities as well as water supply pipes, sewer pipes, electric power cables, artificial cavities created by subway construction are complexly distributed in the artificial ground in the shallow depths of the urban area. For deep tunnel excavation, it is necessary to understand the properties of the ground which is characterized by porous elements and various geological structures, and their influence on the stability of the ground. This study analyzed geological factors for risk assessment in deep excavation in South Korea based on domestic and overseas case study. As a result, a total of 7 categories and 38 factors were derived. Factors with high weights were fault and fault clay, differential stress, rock type, groundwater and mud inrush, uniaxial compressive strength, cross-sectional area of tunnel, overburden thickness, karst and valley terrain, fold, limestone alternation, fluctuation of groundwater table, tunnel depth, dyke, RQD, joint characteristics, anisotropy, rockburst and so forth.

High-Resolution Seismic Reflection Profiling on Land with Hydrophones Employed in the Stream-Water Driven Trench (하천수유입과 하이드로폰을 이용한 육상 고분해능 탄성파반사법탐사)

  • Kim Ji-Soo;Han Su-Hyung;Kim Hak-Soo;Choi Won-Suk;Jung Chang-Ho
    • Geophysics and Geophysical Exploration
    • /
    • 제4권4호
    • /
    • pp.133-144
    • /
    • 2001
  • An effective seismic reflection technique for mapping the cavities and bedrock surface in carbonate rocks is described. The high resolution seismic reflection images were successfully registered by using the hydrophones employed in the stream-water driven trench, and were effectively focused by applying optimal data processing sequences. The strategy included enhancement of the signal interfered with the large-amplitude scattering noise, through pre- and post stack processing such as time-variant filtering, bad-trace editing, residual statics, velocity analysis, and careful muting after NMO (normal moveout) correction. The major reflections including the bedrock surface were mapped with the desired resolution and were correlated to the seismic crosshole tomographic data. Shallow major reflectors could be identified and analyzed on the AGC (auto gain control)-applied field records. Three subhorizontal layers were identified with their distinct velocities; overburden (<3000 m/s), sediments (3000-4000 m/s), limestone bedrock (>4000 m/s). Taking into account of no diffraction effects in the field records, gravel-rich overburdens and sediments are considered to be well sorted. Based on the images mapped consistently on the whole survey line and seismic velocity increasing with depth, this area probably lacks in sizable cavities (if any, no air-filled cavities).

  • PDF

Major causes of failure and recent measurements of tunnel construction (터널시공 중 붕락발생 원인과 최신 보강기술)

  • Park, Bong-Ki;Hwang, Je-Don;Park, Chi-Myeon;Kim, Sang-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.140-153
    • /
    • 2005
  • During the tunnel construction the major failure mode can be categorized as: tunnel failure just after the tunnel excavation without support, failure after application of shotcrete and finally failure after setting the concrete lining. The failure mode just after the tunnel excavation without support, can be further classified as : bench failure, crown failure, face failure, full face failure, failure due to weak strata and failure due to overburden. Moreover the failure after application of shotcrete is classified as heading face failure, settlement of shotcrete support, local failure of shotcrete lining and invert shotcrete. To find out the major causes of tunnel collapse, the investigation was done in case of the second phase of Seoul subway construction. The investigation results depicted that the major causes of tunnel collapse were due to the weak layer of rock/fault and sudden influx of ground water from the tunnel crown. While the investigation results of the mountain road tunnels construction have shown that the major causes of tunnel failure were inadequate analysis of tunnel face mapping results, intersection of faults and limestone cavities. In this paper some recent measurement in order to mitigate such tunnel collapse are presented

  • PDF

Microgravity for Engineering and Environmental Applications (토목.환경 응용을 위한 고정밀 중력탐사)

  • Park, Yeong-Sue;Rim, Hyoung-Rae;Lim, Mu-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 특별 심포지엄 논문집
    • /
    • pp.15-25
    • /
    • 2007
  • Gravity method could be one of the most effective tool for evaluating the soundness of basement which is directly correlated with density and its variations. Moreover, Gravimeter is easy to handle and strong to electromagnetic noises. But, gravity anomaly due to the target structures in engineering and environmemtal applications are too small to detect, comparing to the external changes, such as, elevation, topography, and regional geological variations. Gravity method targeting these kinds of small anomaly sources with high precision usually called microgravity. Microgravimetry with precision and accuracy of few ${\mu}Gal$, can be achieved by the recent high-resolution gravimeter, careful field acquisition, and sophisticated processing, analysis, and interpretation routines. This paper describes the application of the microgravity, such as, density structure of a rock fill dam, detection of abandoned mine-shaft, detection and mapping of karstic cavities in limestone terrains, and time-lapse gravity for grout monitoring. The case studies show how the gravity anomalies detect the location of the targets and reveal the geologic structure by mapping density distributions and their variations.

  • PDF

Assessment of Mass Fraction and Melting Temperature for the Application of Limestone Concrete and Siliceous Concrete to Nuclear Reactor Basemat Considering Molten Coree-Concrete Interaction

  • Lee, Hojae;Cho, Jae-Leon;Yoon, Eui-Sik;Cho, Myungsug;Kim, Do-Gyeum
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.448-456
    • /
    • 2016
  • Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies themass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The $H_2O$ content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of $CO_2$ necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

Behaviour Characteristics of Tunnel in the Cavity Ground by using Scale Model Tests (축소모형실험을 이용한 공동지반에서의 터널 거동특성)

  • Chung, Jeeseung;Moon, Innki;Yoo, Chanho
    • Journal of the Korean GEO-environmental Society
    • /
    • 제14권12호
    • /
    • pp.61-69
    • /
    • 2013
  • As construction for road and train tunnel is increasing, various geotechnical conditions can be faced during the construction stage. Especially, if the tunnel is located in limestone area, the cavity is mostly to locate in tunnel planning location. One or some cavities which can be harmful for tunnel safety are predicted. Hence, this study was fulfilled to confirm the influence between tunnel and cavity using laboratory scale down model test and numerical analysis. The scale down model test was carried out to confirm the failure load of the model ground about the interval length of cavity and tunnel and to analyze behaviour characteristics of the model ground on the cavity shape. From the model test result, the failure load decrease in accordance with decreasing of interval length between cavity and tunnel within 0.5D. The numerical analyses were carried out for verification about scale down model test. From the numerical analysis result, tunnel safety decreases in the case of the interval between cavity and tunnel within 0.5D.

3D gravity inversion with Euler deconvolution as a priori information (오일러 디컨벌루션을 사전정보로 이용한 3 차원 중력 역산)

  • Rim, Hyoung-Rae;Park, Yeong-Sue;Lim, Mu-Taek;Koo, Sung-Bon;Kwon, Byung-Doo
    • Geophysics and Geophysical Exploration
    • /
    • 제10권1호
    • /
    • pp.44-49
    • /
    • 2007
  • It is difficult to obtain high-resolution images by 3D gravity inversion, because the problem is extremely underdetermined - there are too many model parameters. In order to reduce the number of model parameters we propose a 3D gravity inversion scheme utilising Euler deconvolution as a priori information. The essential point of this scheme is the reduction of the nonuniqueness of solutions by restricting the inversion space with the help of Euler deconvolution. We carry out a systematic exploration of the growing body process, but only in the restricted space within a certain radius of the Euler solutions. We have tested our method with synthetic gravity data, and also applied it to a real dataset, to delineate underground cavities in a limestone area. We found that we obtained a more reasonable subsurface density image by means of this combination between the Euler solution and the inversion process.

Anisotrpic radar crosshole tomography and its applications (이방성 레이다 시추공 토모그래피와 그 응용)

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2005년도 제7회 특별심포지움 논문집
    • /
    • pp.21-36
    • /
    • 2005
  • Although the main geology of Korea consists of granite and gneiss, it Is not uncommon to encounter anisotropy Phenomena in crosshole radar tomography even when the basement is crystalline rock. To solve the anisotropy Problem, we have developed and continuously upgraded an anisotropic inversion algorithm assuming a heterogeneous elliptic anisotropy to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. In this paper, we discuss the developed algorithm and introduce some case histories on the application of anisotropic radar tomography in Korea. The first two case histories were conducted for the construction of infrastructure, and their main objective was to locate cavities in limestone. The last two were performed In a granite and gneiss area. The anisotropy in the granite area was caused by fine fissures aligned in the same direction, while that in the gneiss and limestone area by the alignment of the constituent minerals. Through these case histories we showed that the anisotropic characteristic itself gives us additional important information for understanding the internal status of basement rock. In particular, the anisotropy ratio defined by the normalized difference between maximum and minimum velocities as well as the direction of maximum velocity are helpful to interpret the borehole radar tomogram.

  • PDF