• Title/Summary/Keyword: limestone, soil

Search Result 138, Processing Time 0.027 seconds

Changes in Phytoavailability of Heavy Metals by Application of Limestone in the Farmland Soil nearby Abandoned Metal Mine and the Accumulation of Heavy Metals in Crops (폐금속 광산 주변 농경지 토양에서 석회석 처리에 의한 중금속의 식물유효도 변화 및 작물의 중금속 축적)

  • Yun, Sung-Wook;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • As topographic characteristics of Korea where 64 % of the national land area is forest and only 17 % is being used as farmland, remediation of farmland contaminated by heavy metals is a considerably important issue. In this study, as an alternative of practically and effectively remediating farmland which was abandoned as its crop plants exceeded maximum residue limit of heavy metals due to mining impact, applicability of stabilization method was examined through the pilot-scale field experiment. Three plots ($L{\times}W{\times}D=3m{\times}2m{\times}0.3m$) were installed at the selected farmland and in plot 1, only soil of the selected farmland was applied, in pilot 2, soil of the selected farmland plus 3 % limestone (w/w) was applied and in pilot 3, soil of the selected farmland plus 3 % limestone was applied and then uncontaminated soil was covered thereon (0.3 m). After that, seeds of radish, Korean cabbage and soybean of which characteristics of edible portions are different were sowed on each plot and cultivated. Afterwards, at a proper harvesting time (app. 80 days later), crop plants and soil were collected and phytoavailability (0.11 M HOAc extractable) of heavy metals in soil and accumulated concentration of heavy metal in edible portion of crop plants were examined. As a result, it was revealed that phytoavailability of heavy metals in soil added with limestone (plot 2) was clearly reduced compared with plot 1 (untreated) and owing to this treatment, accumulated concentration of heavy metals in edible portion of crops was also clearly reduced compared with plot 1. While radish cultivated in plot 1 had exceeded maximum residue limit of agricultural products, in particular, plot 2 using limestone had shown concentration lower than maximum residue limit and this plot had shown little difference with 3 plot where crop was cultivated in uncontaminated soil cover. Therefore, it was considered that for abandoned farmland like the selected farmland, reducing mobility and phytoavailability of heavy metals and reducing crop uptake through stabilization method would be an effective and practical alternative for producing safe agricultural products on a sustained basis.

Community Structure, Phytomass, and Primary Productivity in Thuja orientalis Stands on Limestone Area

  • Kwak, Young-Se;Lee, Choong-Il
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.189-196
    • /
    • 1999
  • The community structure, phytomass, and primary productivity in Thuja orientalis stands on a limestone area located in Maepo-up, Chungbuk province in Korea were estimated quantitatively. Seven species including a small proportion of Quercus dentata were identified in the tree layer, 26 species including Ulmus macrocarpa in the shrub layer, and 79 species including Carex lnceolata in the herb layer of the Thuja stands. The vertical distribution of the fine root phytomass exhibited a power functional decrease relative to the soil depth. The seasonal changes in the fine root phytomass at a soil depth of 5 cm were closely related to the pecipitation in the study area. The productivity of the stand of stems, branches, leaves, and roots were 10.72, 0.82, 0.45 and 6.46 ton DM. $ha^{-1}$ .$yr^{-1}$, respectively. The Thuja stand had a high foliage(25%) and low rate of production per unit of foliage. The annual turnover rate of the fine roots int he Thuja stand was 6.71 $yr^{-1}$. The net primary production of the overstory including the understory was estimated at 19.48 ton DM.$ha^{-1}$.$yr^{-1}$ including an underground section of 6.46 ton DM.$ha^{-1}$.$yr^{-1}$(33%). The allocation ratio of net production to root was lower in the limestone Thuja communities than at the nearby non-limestone ones, whereas the production efficiency to leaf weight was higher in the limestone communities. These results would seem to indicate that the limited production capacity is due to the calcium toxicity and low availability of iron and phosphorus in a limestone soil with a high pH, calcium, and bicarbonate content with a strategy for survival in a hostile habitat.

  • PDF

The Behavior of Bearing Capacity of Steel Pipe Piles Reinforced by Super Injection Grouting at Pile Tip (S.I.G 공법으로 선단보강된 강관말뚝의 지지거동)

  • Park, Young-Ho;Kim, Nag-Young;Yook, Jeong-Hoon;Choi, Jin-O
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.20-27
    • /
    • 2004
  • Reinforced twice than width of foundation with SIC under steel piles drived in cohesion soil and in the coal-limestone which heavily fractured. To analyze behaviour characteristic of steel piles, load transfer test was performed to steel piles attached with strain gauges to axial direction. After it passed 49days, dynamic load test was performed to set-up effect of steel piles bearing capacity. The results of test were compared to each other. According to the results, as the skin friction of steel pile was on the same condition, end bearing capacity of steel piles established on SIC solid of cemented milk in cohesion soil was three times than steel piles established on SIG solid of cemented milk in heavily fractured coal- limestone. After piles were driven and passes 49days, in case of piles on SIG solid of comented milk in cohesion soil the increaes of allowable bearing capacity was 442.9% and allowable bearing capacity of piles on SIG solid of cemented milk in heavily fractured coal-limestone increased 22.4%.

  • PDF

Environmental Factors Influencing Tree Species Regeneration in Different Forest Stands Growing on a Limestone Hill in Phrae Province, Northern Thailand

  • Asanok, Lamthai;Marod, Dokrak
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.3
    • /
    • pp.237-252
    • /
    • 2016
  • Improved knowledge of the environmental factors affecting the natural regeneration of tree species in limestone forest is urgently required for species conservation. We examined the environmental factors and tree species characteristics that are important for colonization in diverse forest stands growing on a limestone hill in northern Thailand. Our analysis estimated the relative influence of forest structure and environmental factors on the regeneration traits of tree species. We established sixty-four $100-m^2$ plots in four forest stands on the limestone hill. We determined the species composition of canopy trees, regenerating seedlings, and saplings in relation to the physical environment. The relationships between environmental variables and tree species abundance were assessed by canonical correspondence analysis (CCA), and we used generalized linear mixed models to examine data on seedling/sapling abundances. The CCA ordination indicated that the abundance of tree species within the mixed deciduous forest was closely related to soil depth. The abundances of tree species growing within the sink-hole and hill-slope stands were positively related to the extent of rocky outcropping; light and soil moisture positively influenced the abundance of tree species in the hill-cliff stand. Physical factors had a greater effect on tree regeneration than did factors related to forest structure. Tree species, such as Ficus macleilandii, Dracaena cochinchinensis, and Phyllanthus mirabilis within the hill-cliff or sink-hole stand, colonized well on large rocky outcroppings that were well illuminated and had soft soils. These species regenerated well under conditions prevailing on the limestone hill. The colonization of several species in other stands was negatively influenced by environmental conditions at these sites. We found that natural regeneration of tree species on the limestone hill was difficult because of the prevailing combination of physical and biological factors. The influence of these factors was species dependent, and the magnitude of effects varied across forest stands.

A Study on the Slope Analysis of Weathered Limestone Soils during Rainfalls (강우 시 석회암 풍화토 사면의 안정해석에 관한 연구)

  • Kim Jong-Ryeol;Kang Seung-Goo;Kang Hee-Bog;Park Seung-Kyun;Park Chol-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • A set of soil samples were picked up from a failed slope formed by rainfall in limestone zone in Jangseong-gun, Jeonnam, Korea, to find out its physical and mechanical characteristics for this study, and variation of safety factor depending on slope inclination was defined by analysing slope stability affected by rainfall. Decomposed limestone soil in the research area is composed of quartz, orthoclase, gibbsite, geothite, etc., with specific gravity of 2.73, and this soil is included in SC by unified soil classification system. Calcium ingredient decreased remarkably during weathering at its mother rock. Coefficient of permeability is 2.56×10/sup -4/ cm/ sec, similar to its value of silty clay. Cohesion decreases remarkably from 3.0 t/ ㎡ to 0.72 t/ ㎡, and Φ value of internal friction angle tends to decrease as it turns to be saturated soil from partial saturated soil in the shear test. To analyze slope stability affected by rainfall, it is reasonable to seek seepage depth with reference to rainfall* intensity. In the slope stability analysis, when the seepage depth is the larger, its safety factor is the less, which makes the slope unstable. Comparing with minimum safety factor, 1.5 of cut slope in consideration of the seep-age line, safety factor is found to be satisfactory only when inclination of cut slope of decomposed limestone soil is more than 1:1.2 slope at least considering rainfall. It is also found that decrease of cohesion has great effect on decline of safety factor of slope while partial saturated soil turns to be saturated soil.

The Alterations of Geochemical Behavior of Arsenic in Stabilized Soil by the Addition of Phosphate Fertilizer (인산질 비료에 의한 안정화 적용 토양 내 비소의 지구화학적 거동 변화)

  • Jeon, Yong-Jung;Kim, Bun-Jun;Ko, Ju-In;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.209-217
    • /
    • 2022
  • The purpose of this study was to confirm the dissolution of arsenic from the stabilized soil around abandoned coal mines by cultivation activities. Experimental soils were collected from the agricultural field around Okdong and Buguk coal mines, and the concentration of arsenic in the soil and the geochemical mobility were confirmed. The average arsenic concentration was 20 mg/kg. The soil with relatively high geochemical mobility of arsenic in the soil was used in the batch and column experiment. The limestone was mixed with soil for soil stabilization, and the mixing ratio was 3% of limestone, based on the soil weight. The phosphoric acid fertilizer (NH4H2PO4) was added to the soil to simulate a cultivation condition according to the Rural Development Administration's rules. Comparative soil without mixing limestone was prepared and used as a control group. The arsenic extraction from soil was increased following the fertilizer mixing amount and it shows a positive relationship. The concentration of phosphate in the supernatant was relatively low under the condition of mixing limestone, which is determined to be result of binding precipitation of phosphate ions and calcium ions dissolved in limestone. Columns were set to mix phosphoric acid fertilizers and limestone corresponding to cultivation and stabilization conditions, and then the column test was conducted. The variations of arsenic extraction from the soil indicated that the stabilization was effectible until 10 P.V.; however, the stabilization effect of limestone decreased with time. Moreover, the geochemical mobility of arsenic has transformed by increasing the mobile fractions in soil compared to initial soil. Therefore, based on the arsenic extraction results, the cultivation activities using phosphoric fertilizer could induce a decrease in the stabilization effect.

Comparison of the Structure of Grassland Communities and the Performance of Galcicoles and Calcifuges on the Limiestone and the Granite Areas (石灰岩과 花崗岩地帶에서 草地群落의 構造 및 好石灰植物과 嫌石灰植物의 成就度 比校)

  • Kwak, Young-Se;Chin, Kuk-Jeong;Min, Kuem-Suk;Kim, Joon-Ho;Choung, Yeon-Sook
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.105-112
    • /
    • 1994
  • Structure of grassland communities was investigated, and performance of populations of Themeda triandra var. japonica and Miscanthus sinensis were compared on limestone and granite soils. Forty three and forty taxa occurred on the limestone and granite grasslands, respectively, but their similarity was very low. Shoot height and number of hills per patch, as a measure of performance, of Themeda on the limestone grassland were higherthan those on the granite grassland. In contrast, shoot height and number on hills per patch of Miscanthus were higher on limestone than granite grassland. Evidence shows that poor growth of Micanthus population on the limestone soil was associated with higher content of insoluble divalent cations than soluble ones in shoot tissue.

  • PDF

Community Structure of Ectomycorrhizal Fungal communities Colonizing Quercus spp. in Limestone Areas of Korea (석회암 지대 참나무속 식물에 공생하는 외생균근균의 군집구조)

  • Lee, Jong-Chul;Park, Hyeok;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.49 no.1
    • /
    • pp.109-118
    • /
    • 2021
  • In this study, we analyzed the diversity of ectomycorrhizal (ECM) fungal communities of Quercus spp. roots in the limestone area. We identified 45 generd of ECM using next generation sequencing (NGS) analysis. Soil chemical composition analysis confirmed soil pH, substitution calcium concentration, total nitrogen content, organic phosphate, and organic matter content. Shannon's Index was calculated according to the changes in soil chemical composition. The results of cluster analysis showed that Sebacina, Tomentella, Tuber, Densospora, Inocybe, Suillus, and Piloderma were the main genera of symbiotic ECM fungi that thrived in soil with high pH and calcium content.

The Study on the Wollastonite Mineral Resources for Silicious Fertilizer (Wollastonite을 중심(中心)으로 한 규산질비료광물자원(珪酸質肥料鑛物資源)에 관(關)한 연구(硏究))

  • Shin, Byung Woo
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.221-229
    • /
    • 1972
  • Through the series of study on the above subjects, the following were founded. 1. Soluble silica in paddy top-soil (xppm) and maxium possible yield (y) is expressed as following equatic $y=63.97+0.425x-0.00114x^2$ It is known that soluble silica in paddy top-soil in South Korea is limited as 130ppm. 2. Gnder the present Korean condition 90% of paddy-top-soil is estimated to be short in available silica content and the country average to only 78ppm. 3. The total area of Korean paddy-top-soil is about 1,036,710 ha. All requirements of wollastonite in South Korea estimated from the equation $Y=0.94-0.033{\times}$are about 2 million M/T 4. Silicates fertilizer minerals are Bentonite, Zeolite, Wollastonite, Serpentine, and Chlorite. But Wollastonite is most economic and can be supplied to using Korea. 5. Wollastonite is formed in contact metomorphic deposits. Limestone is the country rock of wollastonite. Limestone in Korea is in Ryunchcon system, (Pre-cambrian) Okcheon system, (unknown), Great limestone series (paleozoic), Hongjum series (Paleozoic) and Kyungsang system (mesozoic) so that the zones of these limestone and igneous rock are the possible area which wollastonite can be produced. 6. According to the published geologic map (scale 1/5000), about 25 provinces will be possible area which wollastonite can be produced. In future, I believe that many possible area will be increased. 7. According to this survey at Danyang, total wollastonite resources are about 179,000 M/T and average of soluble $SiO_2$ is 29.84%. 8. According to this survey at Daijeon, total resources are about 57,600 M/T and average of soluble $SiO_2$ is 21.53%. 9. Total wollastonite resources including Danyang, Yangduk, and Daijeon are about 1,172,200 M/T. Considering possible resources, it will be over 20 million M/T and I can say that it is possible to be supply for a score.

  • PDF

Community Structure and Soil Properties of the Pinus densiflora Forests in Limestone Areas (石灰岩 地域 소나무群集의 構造와 土壤의 物理 化學的 性質)

  • Kim, Joon-Ho;Mun, Hyeong-Tae;Kwak, Young-Se
    • The Korean Journal of Ecology
    • /
    • v.13 no.4
    • /
    • pp.285-295
    • /
    • 1990
  • Floristic composition and soil properties were analyzed in red pine($Pinus densiflora$) communities in the limestone areas. Tanyang, Ch ungbuk Province in Korea. The tree layer was composed of $Juniperus rigida, Quercus dentata, Q. mongolica$ and others as well as $P. densiflora$, all of which also appeared in soils of grinite origin The shrub layer was dominated by $Q. dentata, Lespedeza cyrtobotrya, Securinega suffruticosa, Abelia coreana$ and $Uimus davidiana$ for $suberosa$. Among these $A. coreana$ and $U. davidiana$ for $suberosa$ belonged to calcicole plant. The herb layer dominated by $Carex lanceolata$. Soil pH ranged 7.9-8.3. Total nitrogen and available phosphorus content of the soil were lower than those of noncalcareous soils. However, exchangeable calcium and magnesium content were 10 times and 2~3 times greater than those of noncalcreous soils, respectively. The difference of soil texture between top soil(loam soil) and subsoil(sand soil), and higher soil organic matter content than noncalcareous red pine forest soils seemed related to the casts forming activities of earthworms.

  • PDF