• Title/Summary/Keyword: likelihood inference

Search Result 158, Processing Time 0.024 seconds

Likelihood-Based Inference on Genetic Variance Component with a Hierarchical Poisson Generalized Linear Mixed Model

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1035-1039
    • /
    • 2000
  • This study developed a Poisson generalized linear mixed model and a procedure to estimate genetic parameters for count traits. The method derived from a frequentist perspective was based on hierarchical likelihood, and the maximum adjusted profile hierarchical likelihood was employed to estimate dispersion parameters of genetic random effects. Current approach is a generalization of Henderson's method to non-normal data, and was applied to simulated data. Underestimation was observed in the genetic variance component estimates for the data simulated with large heritability by using the Poisson generalized linear mixed model and the corresponding maximum adjusted profile hierarchical likelihood. However, the current method fitted the data generated with small heritability better than those generated with large heritability.

Some Remarks on the Likelihood Inference for the Ratios of Regression Coefficients in Linear Model

  • Kim, Yeong-Hwa;Yang, Wan-Yeon;Kim, M.J.;Park, C.G.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.251-261
    • /
    • 2004
  • The paper focuses primarily on the standard linear multiple regression model where the parameter of interest is a ratio of two regression coefficients. The general model includes the calibration model, the Fieller-Creasy problem, slope-ratio assays, parallel-line assays, and bioequivalence. We provide an orthogonal transformation (cf. Cox and Reid (1987)) of the original parameter vector. Also, we give some remarks on the difficulties associated with likelihood based confidence interval.

  • PDF

A Probabilistic Tracking Mechanism for Luxury Purchase Implemented by Hidden Markov Model, Bayesian Inference, Customer Satisfaction and Net Promoter Score (고객만족, NPS, Bayesian Inference 및 Hidden Markov Model로 구현하는 명품구매에 관한 확률적 추적 메카니즘)

  • Hwang, Sun Ju;Rhee, Jung Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.79-94
    • /
    • 2018
  • The purpose of this study is to specify a probabilistic tracking mechanism for customer luxury purchase implemented by hidden Markov model, Bayesian inference, customer satisfaction and net promoter score. In this paper, we have designed a probabilistic model based on customer's actual data containing purchase or non-purchase states by tracking the SPC chain : customer satisfaction -> customer referral -> purchase/non-purchase. By applying hidden Markov model and Viterbi algorithm to marketing theory, we have developed the statistical model related to probability theories and have found the best purchase pattern scenario from customer's purchase records.

Robust Inference for Testing Order-Restricted Inference

  • Kang, Moon-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.1097-1102
    • /
    • 2009
  • Classification of subjects with unknown distribution in small sample size setup may involve order-restricted constraints in multivariate parameter setups. Those problems makes optimality of conventional likelihood ratio based statistical inferences not feasible. Fortunately, Roy (1953) introduced union-intersection principle(UIP) which provides an alternative avenue. Redescending M-estimator along with that principle yields a considerably appropriate robust testing procedure. Furthermore, conditionally distribution-free test based upon exact permutation theory is used to generate p-values, even in small sample. Applications of this method are illustrated in simulated data and read data example (Lobenhofer et al., 2002)

BAYESIAN AND CLASSICAL INFERENCE FOR TOPP-LEONE INVERSE WEIBULL DISTRIBUTION BASED ON TYPE-II CENSORED DATA

  • ZAHRA SHOKOOH GHAZANI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.819-829
    • /
    • 2024
  • This paper delves into an examination of both non-Bayesian and Bayesian estimation techniques for determining the Topp-leone inverse Weibull distribution parameters based on progressive Type-II censoring. The first approach employs expectation maximization (EM) algorithms to derive maximum likelihood estimates for these variables. Subsequently, Bayesian estimators are obtained by utilizing symmetric and asymmetric loss functions such as Squared error and Linex loss functions. The Markov chain Monte Carlo method is invoked to obtain these Bayesian estimates, solidifying their reliability in this framework.

The Likelihood for a Two-Dimensional Poisson Exceedance Point Process Model

  • Yun, Seok-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.793-798
    • /
    • 2008
  • Extreme value inference deals with fitting the generalized extreme value distribution model and the generalized Pareto distribution model, which are recently combined to give a single model, namely a two-dimensional non-homogeneous Poisson exceedance point process model. In this paper, we extend the two-dimensional non-homogeneous Poisson process model to include non-stationary effect or dependence on covariates and then derive the likelihood for the extended model.

Semiparametric Inference for a Multistate Stochastic Survival Model

  • Sung Chil Yeo
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.1
    • /
    • pp.239-263
    • /
    • 1998
  • In this paper, we consider a multistate survival model which incorporates covariates and contains two illness states and two death states. The underlying stochastic process is assumed to follow nonhomogeneous Markov process. The estimates of survival, transition and competing risks probabilities are given via the methods of partial likelihood and nonparametric maximum likelihood. Our discussion is based on the statistical theory of counting process. An illustration is given to the data of patients in a heart transplant program. The goodness of fit procedures are also discussed to check the adequacy of the model.

  • PDF

ORDER RESTRICTED TESTS FOR SYMMETRY AGAINST POSITIVE BIASEDNESS

  • Oh, Myong-Sik
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.3
    • /
    • pp.335-347
    • /
    • 2007
  • Two new types of positive biasedness, which are closely related to Type III positive biasedness (Yanagimoto and Sibuya, 1972), are proposed. We call these near Type III positive biasedness. Though no implication between Type II and near Type III biasedness exists, near Type III seems to be less restrictive than Type II biasedness. Constrained maximum likelihood estimates of distribution functions under near Type III positive bisedness are obtained. The likelihood ratio tests of symmetry against new positive biasedness restrictions are proposed. A small simulation study is conducted to compare the performance of the tests.

Bayesian Inference for Modified Jelinski-Moranda Model by using Gibbs Sampling (깁스 샘플링을 이용한 변형된 Jelinski-Moranda 모형에 대한 베이지안 추론)

  • 최기헌;주정애
    • Journal of Applied Reliability
    • /
    • v.1 no.2
    • /
    • pp.183-192
    • /
    • 2001
  • Jelinski-Moranda model and modified Jelinski-Moranda model in software reliability are studied and we consider maximum likelihood estimator and Bayes estimates of the number of faults and the fault-detection rate per fault. A gibbs sampling approach is employed to compute the Bayes estimates, future survival function is examined. Model selection based on prequential likelihood of the conditional predictive ordinates. A numerical example with simulated data set is given.

  • PDF

A Joint Frailty Model for Competing Risks Survival Data (경쟁위험 생존자료에 대한 결합 프레일티모형)

  • Ha, Il Do;Cho, Geon-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1209-1216
    • /
    • 2015
  • Competing-risks events are often observed in a clustered clinical study such as a multi-center clinical trial. We propose a joint modelling approach via a shared frailty term for competing risks survival data from a cluster. For the inference we use the hierarchical likelihood (or h-likelihood), which avoids an intractable integration. We derive the corresponding h-likelihood procedure. The proposed method is illustrated via the analysis of a practical data set.