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BAYESIAN AND CLASSICAL INFERENCE FOR

TOPP-LEONE INVERSE WEIBULL DISTRIBUTION

BASED ON TYPE-II CENSORED DATA
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Abstract. This paper delves into an examination of both non-Bayesian
and Bayesian estimation techniques for determining the Topp-leone inverse

Weibull distribution parameters based on progressive Type-II censoring.

The first approach employs expectation maximization (EM) algorithms to
derive maximum likelihood estimates for these variables. Subsequently,

Bayesian estimators are obtained by utilizing symmetric and asymmetric

loss functions such as Squared error and Linex loss functions. The Markov
chain Monte Carlo method is invoked to obtain these Bayesian estimates,

solidifying their reliability in this framework.
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1. Introduction

In numerous investigations of lifetime and reliability, it is common for re-
searchers to lack complete information regarding the failure times of all units
under study. Situations may arise where specific units are deliberately removed
from the experiment or unintentionally lost altogether. Thus, censored data of-
ten emerges from such experiments. This occurrence is well-known as type-I and
type-II censoring, representing two prevalent types of censoring schemes.

These two schemes share a characteristic that precludes the removal of units
before the final termination point of testing. However, a hybrid scheme, mixture-
type censoring, combines elements from type-I and type-II schemes. The intro-
duction of this mixed arrangement can be attributed to [1]and has since gained
significant popularity in the realm of reliability and life-testing experiments.
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In the realm of longevity studies, one must take into account situations where
the failure of a studied unit can be attributed to various components of the
same type, which may not be completely visible. In such cases, the time at
which the unit fails is documented and analyzed based on information gathered
through observation. Furthermore, this analysis considers the component with
the shortest lifespan among those contributing to the failure.

This approach is taken because it is often impractical for researchers to ex-
amine all factors contributing to a unit’s failures; these factors are concealed
or regarded as supplementary risks. For instance, when assessing reliability in
second-series systems, researchers focus on identifying the component with the
shortest lifespan among all influential components as it leads to failure and can
be observed. Should you wish for further exploration of this subject matter, see
[2, 3, 4].

The phenomenon of censoring occurs when test subjects, despite being healthy,
are lost or excluded from the study. This research focuses on a specific type of
censoring where the test is ongoing until the rth unit fails and the r value is
predetermined. In such cases, we can determine the probability function of ob-
servations t1 < · · · < tr based on an assumed density function.

L(ω; t) =
n!

(n− r)!

r∏
i=1

g(ti, ω) [1−G(tr;ω)]
n−r

. (1)

The ω denotes the distribution parameters, while tr refers to the specific failure
time observed in the rth test unit.

In their scholarly pursuit, [5]delved into the intricate domain of incremental
censoring data, specifically focusing on estimating of parameters pertaining to
the inverse Weibull distribution. Notably, similar investigations were undertaken
by researchers such as [6, 7, 8]respectively, as well as [9].However, their explo-
rations encompassed alternative censored models including exponential, gamma-
exponential, Poisson inverse exponential distribution, and Weibull-Poisson dis-
tribution correspondingly.

2. The Topp-leone Inverse Weibull Distribution

In this Section, we shall derive three parameters for the Topp-Leone Inverse
Weibull distribution. To construct the density and distribution function, let us
consider that the probability density function (pdf) and cumulative distribution
function (cdf) of the Inverse Weibull distribution are provided by

FIW (t;β, θ) = e−
β

tθ , β, θ > 0, t > 0, (2)

fIW (t;β, θ) =
βθ

tθ+1
e−

β

tθ , (3)

the probability density function (pdf) and cumulative distribution function (cdf)
of the Topp-Leone family are provided by

GTL(t;α) = [F (t)]α[2− F (t)]α = [1− (F̄ (t))2]α, α > 0, t ∈ R, (4)
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gTL(t;α) = 2αf(t)F̄ (t)[F (t)]α−1[2− F (t)]α−1, α > 0, (5)

where F̄ (t) = 1− F (t).
Upon incorporating equations (2) and (3) into equations (4) and (5), we

obtain the cumulative distribution function and probability density function of
the envisioned model as follows.

GTLIW (t;α, β, θ) =

[
1−

{
1− e−

β

tθ

}2
]α

, α, β, θ > 0, (6)

gTLIW (t;α, β, θ) =
2αβθ

tθ+1
e−

β

tθ

(
1− e−

β

tθ

)[
1−

{
1− e−

β

tθ

}2
]α−1

, (7)

by substituting equations (6) and (7) in equation (1), we can derive the Topp–
Leone inverse Weibull likelihood function, specifically tailored for type II cen-
sored data.

L(ω; t) =
n!

(n− r)!
(2αβθ)r

(
r∏

i=1

t
−(θ+1)
i

)(
e−β

∑r
i=1 t−θ

i

)( r∏
i=1

(
1− e

− β

tθ
i

))

×

 r∏
i=1

[
1−

{
1− e

− β

tθ
i

}2
]α−1

[1−(1−{1− e
− β

tθr

}2
)α]n−r

.

3. Maximum likelihood estimation of the Topp-leone Inverse Weibull
Distribution

Consider the censored data t1 < · · · < tr from the Topp-leone Inverse Weibull
density function. The logarithm of the likelihood function is as follows.

l(ω; t) = ln

(
n!

(n− r)!

)
+ r ln 2 + r lnα+ r lnβ + r ln θ − (θ + 1)

r∑
i=1

ln ti − β

r∑
i=1

ti

+

r∑
i=1

ln

(
1− e

− β

tθr

)
+

r∑
i=1

(α− 1) ln

[
1−

{
1− e

− β

tθ
i

}2
]

+ (n− r) ln

[
1−

(
1−

{
1− e

− β

tθr

}2
)α]

. (8)

The partial derivatives of l(ω; t) with respect to the parameters are:

∂l(ω; t))

∂α
=
r

α
+

r∑
i=1

ln

[
1−

{
1− e

− β

tθ
i

}]
+

(n− r)
(
ln(1− ξ2r )

) (
1− ξ2r

)α
[1− (1− ξ2r )

α
]

= 0,

∂l(ω; t))

∂β
=
r

β
−

r∑
i=1

t−θ
i +

r∑
i=1

e
− β

tθ
i

tθi

(
1− e

− β

tθ
i

) − 2

r∑
i=1

(α− 1)e
− β

tθ
i

(
1− e

− β

tθ
i

)
tθi

[
1−

{
1− e

− β

tθ
i

}2
]
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+
(n− r)α(1 + ξr)

(
1− ξ2r

)α−1

tθi [1− (1− ξ2r )
α
]

= 0,

and

∂l(ω; t))

∂θ
=
r

θ
−

r∑
i=1

ln ti + β

r∑
i=1

t−θ
i ln ti −

r∑
i=1

β ln tie
− β

tθ
i t−θ

i

1− e
− β

tθ
i

+ 2

r∑
i=1

β(α− 1) ln ti

(
1− e

− β

tθ
i

)
t−θ
i

1−
{
1− e

− β

tθ
i

}2

+
2αβ(n− r)

(
1− ξ2r

)α−1
ξr(ln ti)t

−θ
i

1− (1− ξ2r )
α = 0,

where ξr = 1− e
− β

tθr .
Since these equations are not explicit functions in terms of parameters, nu-

merical methods should be used to solve them. [10] showed that using the EM
algorithm will give better results in cases where we have censored data than
Newton Raphson’s method (see [12]).

4. EM Algorithm

The expectation–maximization (EM) algorithm presents itself as an iterative
approach, seeking to unveil (local) maximum likelihood or maximum a posteriori
(MAP) estimations of parameters within statistical models. This endeavor is es-
pecially pertinent when the model’s foundation relies upon latent variables that
elude direct observation and have been introduced by [11].The EM algorithm
entails a meticulous sequence of two steps. The initial step, the E-step, involves
determining the mathematical expectation value of a pseudo-logarithmic func-
tion. Subsequently, in the second step, the M-step, the function obtained in the
preceding step is optimized by maximizing the model’s parameters. To employ
the EM algorithm, we initially acquire the joint probability distribution function
for each (ni, ti), where i varies from one to n.

f(ni; ti;ω) = (αβθ)nt
−(θ+1)
i e

− β

tθ
i

(
1− e

− β

tθ
i

)[
1−

{
1− e

− β

tθ
i

}2
]α−1

, (9)

where ti > 0, α, β, θ > 0 and ni = 1, 2, . . ..
The resultant expression manifests as the log- likelihood function.

lc(ω; t)

= n lnα+ n lnβ + n ln θ − (θ + 1)

r∑
i=1

ln ti − β

r∑
i=1

t−θ
i +

r∑
i=1

ln

(
1− e

− β

tθ
i

)
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+ (α− 1)

r∑
i=1

ln

[
1−

{
1− e

− β

tθ
i

}2
]
− (θ + 1)

n∑
i=r+1

ln ti − β

n∑
i=r+1

t−θ
i

+

n∑
i=r+1

ln

(
1− e

− β

tθ
i

)
+ (α− 1)

n∑
i=r+1

ln

[
1−

{
1− e

− β

tθ
i

}2
]
.

In step E, the expectation of the log- likelihood function for censored data is as
follows.

E(lc(ω; t))

=n lnα+ n lnβ + n ln θ − (θ + 1)

r∑
i=1

ln ti − β

r∑
i=1

t−θ
i +

r∑
i=1

ln

(
1− e

− β

tθ
i

)

+ (α− 1)

r∑
i=1

ln

[
1−

{
1− e

− β

tθ
i

}2
]
− (θ + 1)

n∑
i=r+1

e1i(ω)− β

n∑
i=r+1

e2i(ω)

+

n∑
i=r+1

e3i(ω) + (α− 1)

n∑
i=r+1

e4i(ω), (10)

where

e1i(ω) = E (lnTi | Ti > tr) =

∫ ∞

tr

ln ti · g(ti | Ti > tr)dti,

and we can write

g(ti | Ti > tr) =
g(ti;ω)

P (Ti > tr)
=

2αβθ

tθ+1
i

e
− β

tθ
i

(
1− e

− β

tθ
i

)[
1−

{
1− e

− β

tθ
i

}2
]α−1

1−

[
1−

{
1− e

− β

tθ
i

}2
]α .

(11)

By substitution equation (11) and taking x = tr
ti
, we have

e1i(ω) = (2αβθ)t−θ
r

∫ 1

0

xθ−1 ln

(
tr
x

)
(ηr − η2r)(1− η2r)

α−1

1− [1− η2r ]
α

dx,

where ηr =

(
1− e

− βxθ

tθr

)
.

We have

e2i(ω) = E
(
T−θ
i | Ti > tr

)
=

∫ ∞

tr

t−θ
i g(ti | Ti > tr)dti.

By applying equation (11) and taking x = tr
ti
, we have

e2i(ω) =
(2αβθ)

t2θ−2
r

∫ 1

0

x2θ−3 ηr(1− ηr)[1− η2r ]
α−1

1− [1− η2r ]
α

,



824 Zahra Shokooh Ghazani

and

e3i(ω) = E

(
ln

(
1− e

− β

Tθ
i

)
| Ti > tr

)
=

∫ ∞

tr

ln

(
1− e

− β

tθ
i

)
g(ti | Ti > tr)dti.

Using equation (11) we can write

e3i(ω) =
2αβθ

tθr

∫ 1

0

x−θ−3 (ηr − η2r)[1− η2r ]
α−1 ln ηr

1− [1− η2r ]
α

dx,

and

e4i(ω) =E

(
ln

[
1−

{
1− e

− β

tθ
i

}2
]
| Ti > tr

)

=

∫ ∞

tr

ln

[
1−

{
1− e

− β

tθ
i

}2
]
g(ti | Ti > tr)dti.

By using equation (11), we have

e3i(ω) = (2αβθ)

∫ 1

0

xθ−1t−θ
r ηr(1− ηr)

[
1− [1− ηr}2

]α−1 ln
[
1− {1− ηr}2

]
1− [1− {1− ηr}2]

dx.

In step M, we obtain the derivative of equation (10) with respect to the param-
eters and set them equal to zero.

∂E(lc(ω; t))

∂α
=

n

α
+

n∑
i=1

ln

[
1−

{
1− e

− β

tθ
i

}2
]
+

n∑
i=r+1

e4i(ω) = 0.

Hence we have

α(k+1) = n

−
r∑

i=1

ln

1−{1− e
− β(k)

tθ
(k)

i

}2
−

(k)∑
i=r+1

e
(k)
4i (ω)


−1

,

and
∂E(lc(ω; t))

∂β
= 0 ⇒

n

β
−

r∑
i=1

t−θ
i +

r∑
i=1

1

tθi

e
− β

tθ
i

1− e
− β

tθ
i

+ 2(α− 1)

r∑
i=1

e
− β

tθ
i

{
1− e

− β

tθ
i

}2

tθi

[
1−

{
1− e

− β

tθ
i

}2
] −

n∑
i=r+1

e2i(ω) = 0.

Then

β
(k+1)

=

n


r∑

i=1

t
−θ(k)

i −
r∑

i=1

e

− β(k)

tθ
(k)

i

tθ
(k)

i

1 − e

− β(k)

tθ
(k)

i


− 2(α − 1)

r∑
i=1

e

− β(k)

tθ
(k)

i

1 − e

− β(k)

tθ
(k)

i


tθ

(k)

i

1 −

1 − e

− β(k)

tθ
(k)

i




+
n∑

i=r+1

e2i(ω)



−1

,
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and
∂E(lc(ω; t))

∂θ
= 0 ⇒

n

θ
+

r∑
i=1

ln ti + β
r∑

i=1

t
−θ
i ln ti +

r∑
i=1

βt−θ
i ln ti

1 − e
− β

tθ
i

+ 2(α − 1)
r∑

i=1

βt
−θ
i ln tie

− β

tθ
i

1 − e
− β

tθ
i


1 −

1 − e
− β

tθ
i


2

−
n∑

i=r+1

e1i(ω) = 0.

So we have

θ
(k+1)

=

n

{ r∑
i=1

ln ti − β
(k)

r∑
i=1

t
−θ(k)

i ln ti −
r∑

i=1

β(k)t−θ(k)

i ln ti

1 − e

− β(k)

tθ
(k)

i

− 2
(
α

(k) − 1
) r∑

i=1

β
(k)

t
−θ(k)

i ln tie

− β(k)

tθ
(k)

i

×

1 − e

− β(k)

tθ
(k)

i


1 −

1 − e

− β(k)

tθ
(k)

i


2
+

n∑
i=r+1

e
(k)
1i (ω)

}−1

.

(See [13]).

5. Bayesian Estimation

Suppose that we are presented with a sample t, denoted as t = (t(1), t(2), . . . ,
t(r)), which has been observed from the Topp-Leone inverse Weibull distribution
under type-II censoring. We assume that all the unknown parameters α, β and θ
follow independent gamma priors. Probability density functions of a particular
form can be describe these priors densities

π1(α) ∝ αm1−1e−n1α,

π2(β) ∝ βm2−1e−n2β ,

π3(θ) ∝ θm3−1e−n3θ.

Moreover, the collective posterior density of (α, β, θ) concerning the observed
data t can be derived.

π(α, β, θ | t) ∝L(t | α, β, θ) · π1(α) · π2(β) · π3(θ),

π(α, β, θ | t) ∝αr+m1−1 · βr+m2−1 · θr+m3−1 · e−θ(
∑r

i=1 ln ti+n3) · e−β(
∑r

i=1 t−θ
i +n2)

× e
−α

n1−
∑r

i=1

1−

1−e
− β

tθ
i


2

exp

(
r∑

i=1

ln

(
1− e

− β

tθ
i

))
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×

[
1−

(
1−

{
1− e

− β

tθ
i

}2
)α]n−r

. (12)

The squared error and Linex loss function have been employed Bayesian param-
eter estimation. These particular loss functions are delineated as follows, with

δ̂(ω) denoting the estimated value for the δ(ω) parameter.

LSB

(
δ(ω), δ̂(ω)

)
=
(
δ̂(ω)− δ(ω)

)2
,

LLB

(
δ(ω), δ̂(ω)

)
= e(δ̂(ω)−δ(ω))−c[(δ̂(ω)−δ(ω))−1].

The Bayesian estimator of δ(ω) under linex loss is given by

δ̂(ω) =
−1

k
ln
(
E
(
e−kδ(ω) | t

))
, k ̸= 0.

According to equation (12), the Bayesian estimation of the parameters under
the error squared loss function is as follows.

α̂SB =E(α | t) ∝
∫ ∞

0

∫ ∞

0

∫ ∞

0

απ(α, β, θ | t)dαdβdθ

∝
∫ ∞

0

∫ ∞

0

∫ ∞

0

αr+m1βr+m2−1θr+m3−1h(α, β, θ | t)dαdβdθ,

β̂SB =E(β | t) ∝
∫ ∞

0

∫ ∞

0

∫ ∞

0

αr+m1−1βr+m2θr+m3−1h(α, β, θ | t)dαdβdθ,

θ̂SB =E(θ | t) ∝
∫ ∞

0

∫ ∞

0

∫ ∞

0

αr+m1−1βr+m2−1θr+m3h(α, β, θ | t)dαdβdθ,

where

h(α, β, θ | t) =e
−θ(

∑r
i=1 ln ti+n3)−β(

∑r
i=1 t−θ

i +n2)−α

n1−
∑r

i=1

1−

1−e
− β

tθ
i


2

× exp

(
r∑

i=1

ln

(
1− e

− β

tθ
i

))[
1−

(
1−

{
1− e

− β

tθ
i

}2
)α]n−r

.

The Bayesian estimation of the parameters under the Linex loss function is as
follows

δ̂(ω) =
−1

k
ln
(
E
(
e−kδ(ω) | t

))
,

α̂LB(ω) =
−1

k
ln
(
E
(
e−kα | t

))
,

β̂LB(ω) =
−1

k
ln
(
E
(
e−kβ | t

))
,

θ̂LB(ω) =
−1

k
ln
(
E
(
e−kθ | t

))
.
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Then

E
(
e−kα | t

)

∝
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−θ(
∑r

i=1 ln ti+n3)e−β(
∑r

i=1 t−θ
i +n2)e

−α

k+n1−
∑r

i=1

1−

1−e

− β

tθ
i


2



q(α, β, θ | t)dαdβdθ,

E
(
e−kβ | t

)

∝
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−θ(
∑r

i=1 ln ti+n3)e−β(k+n2+
∑r

i=1 t−θ
i )e

−α

n1−
∑r

i=1

1−

1−e

− β

tθ
i


2



q(α, β, θ | t)dαdβdθ,

E
(
e−kθ | t

)

∝
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−θ(k+n3+
∑r

i=1 ln ti)e−β(n2+
∑r

i=1 t−θ
i )e

−α

n1−
∑r

i=1

1−

1−e

− β

tθ
i


2



q(α, β, θ | t)dαdβdθ,

where

q(α, β, θ)

= α
r+m1−1

β
r+m2−1

θ
r+m3−1

exp

 r∑
i=1

ln

1 − e
− β

tθ
i

1 −

1 −

1 − e
− β

tθ
i


2αn−r

.

The calculation of Bayesian estimates in their current form presents particular
challenges, necessitating the application of a numerical method put forward by
[14, 15].This method expertly utilizes the Markov chain Monte Carlo (MCMC)
approach to address the problem. An intricate utilization of Gibbs sampling
via the Metropolis-Hastings algorithm generates a sample from the posterior
distribution, leading to the subsequent estimation of parameters. Within this
Gibbs sampling methodology, the complete conditional posterior distribution is
as follows.

pi∗1(α | β, θ, t)

= αr+m1−1e
−α

n1−
∑r

i=1

1−

1−e
− β

tθ
i


2 [

1−

(
1−

{
1− e

− β

tθ
i

}2
)α]n−r

,

(13)

π∗
2(β | α, θ, t)
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= βr+m2−1e
−α

n1−
∑r

i=1

1−

1−e
− β

tθ
i


2

exp

(
r∑

i=1

ln

(
1− e

− β

tθ
i

))

×

[
1−

(
1−

{
1− e

− β

tθ
i

}2
)α]n−r

, (14)

π∗
3(θ | α, β, t)

= θr+m3−1e−θ(
∑r

i=1 ln ti+n3)e−β(
∑r

i=1 t−θ
i +n2)e

−α

n1−
∑n

i=1

1−

1−e
− β

tθ
i


2

× exp

(
r∑

i=1

ln

(
1− e

− β

tθ
i

))[
1−

(
1−

{
1− e

− β

tθ
i

}2
)α]n−r

. (15)

According to equations (13) to (15), Bayesian estimation of parameters (α, β, θ)
is based on the samples produced by the MCMC method according to the fol-
lowing steps:

Step 1: (α0, β0, θ0) are determined as initial values.
Step 2: With the Metropolis-Histings algorithm, the value of αi from π∗

1(α |
βi−1, θi−1, t) distribution and βi from π∗

2(β | αi, θi−1, t) distribution and
θi from π∗

3(θ|αi, βi, t) distribution are produced.
Step 3: Step 2 is repeated for the value of i = 1, . . . , N .
Step 4: The Bayesian estimation of α, β, θ is calculated under the squared Loss

function as ĤSB = 1
N

∑n
i=1 ω̂i, and the Linex Loss function is calculated

as follows.

ĤL =
−1

k

(
1

N

N∑
i=1

e−kω̂i

)
.

6. Conclusion

The present study delves into the problem of determining unknown parame-
ters for a Topp-leone inverse Weibull distribution within the framework of PCS-
II, examining it from both BE and Non-BE standpoints. We derived Maximum
Likelihood Estimates (MLE) through meticulous analysis of the parameters char-
acterizing a Topp-leone inverse Weibull distribution. Moreover, our investigation
entailed performing Bayesian Estimation (BE), utilizing Markov Chain Monte
Carlo (MCMC), while considering both symmetric and asymmetric loss func-
tions to yield comprehensive estimates.
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