• Title/Summary/Keyword: lightweight mortar

Search Result 70, Processing Time 0.023 seconds

Performance Assesment of the Existing Tunnel drain and higher permeable for the In-plane Test (평면투수 실험을 통한 기존 배수재와 고투수성 배수재의 성능 평가)

  • Ma, Sang-Joon;Lee, Heung-Soo;Choi, Hee-Sup;Kim, Kyung-Duk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1581-1584
    • /
    • 2008
  • In this study, performance Assesment of the existing tunnel drain and higher permeable for the In-plane Test. Two separate simulation tests from geotexitile and Lightweight Foamed Mortar compare. perfomed:the one is the in-plane test and the other is the clogging phenomenon test. As a result, NATM Composite used to Ligheweight Foamed Mortar pemability 80%, more than existing tunnel drain. Also, clogging phenomenon test do low assesment more than existing tunnel drain geotextile.

  • PDF

An Experimental Study on the Strengthening Effect of RC Beam with Carbon Fiber Grid (탄소섬유그리드를 이용한 RC보의 보강효과에 관한 실험적 연구)

  • Shim, Nak-Hoon;Kim, Jeong-Jae;Park, Young-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.107-118
    • /
    • 2002
  • The purpose of this study is to investigate the strengthening effect of RC beams with carbon fiber grid. Carbon fiber grid that is very lightweight and stronger than steel reinforcement does not rust or corrode and has a very high resistance to salt. In this study, five real size specimens which are strengthened with different types of carbon fiber grid are tested. With the results of this tests, we found the physical and mechanical properties of carbon fiber grid and polymer mortar which are used to strengthen the damaged or cracked reinforcement concrete beams. we also investigate the strengthening effect of carbon fiber grid on the five flexural test specimens that have cracks.

Influence of Mixed Proportion Factors on Strength of Polymer Mortar (배합요인이 경량 폴리머 모르터의 강도에 미치는 영향)

  • 이윤수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.97-105
    • /
    • 1999
  • Recently , polymer concrete has been widely used in the construction industry because of its quick setting, high strength, excellect adhesion, watertightness and chemical resistance compared to ordinary cement concrete. Its application is also increased. In this paper, lightweight polymer mortars using unsaturated polyester resin and lightweight aggregate are prepared with various mix proportations, and tested for slump working life, apparent specific gravity , flexural and compressive strengths. As a result, the slump and working life can be controlled and thier flexural and compressive strengths are 9.7 to 22.0 MPa , and 23.0 to 100.8 MPa respectively at apparent specific gravities of 0.86 to 1.73.

  • PDF

Valorization of Cork Waste to Improve the Anti-Corrosion Properties of Concrete Reinforcements

  • Belkhir, S.;Bensabra, H.;Chopart, J.P.
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.100-110
    • /
    • 2022
  • Corrosion of steel reinforcement is the most important mode of concrete structures damages. It strongly depends on the composition and physicochemical properties of the cementitious medium. The use of waste materials as lightweight aggregates in concrete is environmentally recommended in polluted environments such as marine and/or industrial atmospheres in order to reduce its porosity and ensure the requested protection of reinforcing steel. The present study investigated the effect of waste cork addition on corrosion resistance of steel rebar in mortar specimen prepared in the laboratory. The main objective of this study was to improve the corrosion resistance of reinforcing steel. Another objective of this study was to valorize this ecological product and preserve the environment. Results obtained from various electrochemical tests indicated that the presence of a fine cork powder substantially improved the corrosion resistance of steel in the mortar contaminated by chloride ions. This improvement was reflected by a notable decrease in corrosion current density and a shift of corrosion potential of the steel towards more noble values. Moreover, the presence of a fine cork powder in the mortar had no adverse effect on its mechanical properties.

The Characteristics of Compressive Strength in Mortar with Internal Curing According to Curing Condition (내부양생을 적용한 모르타르의 양생조건에 따른 압축강도 특성)

  • Kim, Joo-Hyung;Cho, Young-Keun;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2018
  • The use of high-strength concrete in construction have been increasing steadily. However, high-strength concrete has a low water-binder ratio, and the problems such as cracks due to hydration heat and shrinkage during the hydration process at the early age. Recently, as a method to reduce the shrinkage of concrete, study of internal curing has carried out according to increasing about interest about it. In this study, the effect of compressive strength on the curing condition(drying, moist, water) was investigated by using artificial lightweight aggregate(LWA) in high strength and high volume mortar. As a result of autogenous shrinkage, the effect of shrinkage reduction was enhanced depending on the increasing of LWA replacement. According to the curing condition, the results of compressive strength showed the different trend. The compressive strength has increased on the drying and moisture condition and decreased on the water condition.

Evaluation of Impact Sound Insulation Properties of Light-Framed Floor with Radiant Floor Heating System

  • Nam, Jin-Woo;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.75-84
    • /
    • 2002
  • In order to find out impact insulation properties, various types of current radiant floor heating systems and light-framed floors that are used in light-framed residential buildings were evaluated for two types of impact sources at the same time. Sound Pressure Level (SPL) was different from each impact sources for those spectrum patterns and peaks. In case of light-framed floor framework, the excitation position and the assumed effective vibrating area have effects on sound pressure level but it is not considerable, and Normalized SPL was reduced for each frequency by increasing the bending rigidity of joist. The mortar layer in the radiant heating system had relatively high density and high impedance, therefore, it distributed much of the impact power when it was excited, and reduced the Normalized SPL considerably. Nevertheless, Increasing a thickness of mortar layer had little influence on SPL. Ceiling components reduced the sound pressure level about 5~25 dB for each frequency. Namely, it had excellent sound insulation properties in a range from 200 to 4,000 Hz frequency for both heavy and lightweight impact sources. Also, there was a somewhat regular sound insulation pattern for each center frequency. The resilient channel reduced the SPL about 2~11 dB, irrelevant to impact source. Consequently, current radiant floor heating systems which were established in light-framed residential buildings have quite good impact sound insulation properties for both impact sources.

Applying the Ferrocement Concept in Construction of Concrete Beams Incorporating Reinforced Mortar Permanent Forms

  • Fahmy, Ezzat H.;Shaheen, Yousry B.I.;Abdelnaby, Ahmed Mahdy;Abou Zeid, Mohamed N.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.83-97
    • /
    • 2014
  • This paper presents the results of an investigation aimed at developing reinforced concrete beams consisting of precast permanent U-shaped reinforced mortar forms filled with different types of core materials to be used as a viable alternative to the conventional reinforced concrete beam. To accomplish this objective, an experimental program was conducted and theoretical model was adopted. The experimental program comprised casting and testing of thirty beams of total dimensions $300{\times}150{\times}2,000mm$ consisting of permanent precast U-shaped reinforced mortar forms of thickness 25 mm filled with the core material. Three additional typical reinforced concrete beams of the same total dimensions were also cast to serve as control specimens. Two types of single-layer and double-layers steel meshes were used to reinforce the permanent U-shaped forms; namely welded wire mesh and X8 expanded steel mesh. Three types of core materials were investigated: conventional concrete, autoclaved aerated lightweight concrete brick, and recycled concrete. Two types of shear connections between the precast permanent reinforced mortar form and the core material were investigated namely; adhesive bonding layer between the two surfaces, and mechanical shear connectors. The test specimens were tested as simple beams under three-point loadings on a span of 1,800 mm. The behavior of the beams incorporating the permanent forms was compared to that of the control beams. The experimental results showed that better crack resistance, high serviceability and ultimate loads, and good energy absorption could be achieved by using the proposed beams which verifies the validity of using the proposed system. The theoretical results compared well with the experimental ones.

Floor Impact Noise Level for Concrete Slab Integrated with Floor Finishing Layers (콘크리트 슬래브와 바닥 상부구조가 일체된 바닥구조의 바닥충격음)

  • Mun, Dae Ho;Oh, Yang Ki;Jeong, Gab Cheol;Park, Hong Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.130-140
    • /
    • 2016
  • Floating floor is most commonly used at apartment houses in Korea for thermal insulation and reducing impact noise. But it in proven that the floating floor is not effective for reducing the floor impact noise in low frequency range. In most cases, impact sound pressure level under 63 Hz frequency band were actually increased by the resonance of resilient material, lightweight concrete and the finishing mortar installed on it. In this paper, an integrated floor system consist of 70 mm light weight concrete and 40 mm finishing mortar successively installed on the concrete slab was suggested to avoid the resonance. Integrated floor system increases total flexural stiffness and mass per unit area. The natural frequencies of first and second vibration mode were increased and acceleration response and floor impact sound level was decreased in all measurement range.

Development of lightweight Fly ash-Plastic Aggregate (석탄회 및 폐플라스틱을 이용한 인공경량합성골재의 개발)

  • Jo Byung Wan;Park Seung Kook;Park Jong Bin;Jansen Daniel C.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.380-383
    • /
    • 2004
  • The coarse and fine aggregates that make up the majority of concrete are resources. But, the raw naturals that make up concrete are our earth's resources and there is not a replenishable stock. Also industrial waste and life waste leaped into a pollution source. Therefore, as construction continue, quarries are exhausted and new sources must be discovered. The purpose of this paper is to investigate an application of recycled coal ash plastics in the construction field. The study examined the physical and mechanical properties of recycled coal ash plastics aggregate. In the results, although the absorption and specific gravity of SLAs increases slightly as the fly ash content increases, the compressive strength and modulus of elastic of concrete made with SLAs remains relatively constant when mortar type and volume fraction are also held constant. These values are always lower than natural-weight aggregate concretes.

  • PDF

Experimental Study on the Engineering Properties of Carbon Fiber Reinforced Cement Composites (탄소섬유 보강 시멘트 복합체의 공학적 특성에 관한 실험적 연구)

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.1 no.1
    • /
    • pp.95-104
    • /
    • 1989
  • In order to discuss the engineering properties of carbon fiber reinforced cement composites with silica fume and silica powder, experimental studies on the CFRC were carried out. The types of fiber used which are in CFRC are PAN-based carbon fiber and Pitch-based carbon fiber. To examine the effects of types, Lengths, contents of carbon fibers and matrices, their properties of fresh and hardened CFRC were tested: According to the test results, the process technology of lightweight CFRC is developed and their optimum mix proportions are successfully proposed. Also, it can be conclueded that the reinforcement of carbon fiber is considerably effective in improving tensile strength, flexural strength, toughness and loss of shrinkage of CFRC compared with conventional mortar.