DOI QR코드

DOI QR Code

Valorization of Cork Waste to Improve the Anti-Corrosion Properties of Concrete Reinforcements

  • Belkhir, S. (Laboratoire des Interactions Materiaux Environnement (LIME), Universite Mohamed Seddik Benyahia) ;
  • Bensabra, H. (Laboratoire d'Energetique Appliquee et Materiaux (LEAM), Universite Mohamed Seddik Benyahia) ;
  • Chopart, J.P. (Universite de Reims Champagne Ardenne, Laboratoire LISM, UFR Sciences)
  • Received : 2021.12.25
  • Accepted : 2022.02.20
  • Published : 2022.05.06

Abstract

Corrosion of steel reinforcement is the most important mode of concrete structures damages. It strongly depends on the composition and physicochemical properties of the cementitious medium. The use of waste materials as lightweight aggregates in concrete is environmentally recommended in polluted environments such as marine and/or industrial atmospheres in order to reduce its porosity and ensure the requested protection of reinforcing steel. The present study investigated the effect of waste cork addition on corrosion resistance of steel rebar in mortar specimen prepared in the laboratory. The main objective of this study was to improve the corrosion resistance of reinforcing steel. Another objective of this study was to valorize this ecological product and preserve the environment. Results obtained from various electrochemical tests indicated that the presence of a fine cork powder substantially improved the corrosion resistance of steel in the mortar contaminated by chloride ions. This improvement was reflected by a notable decrease in corrosion current density and a shift of corrosion potential of the steel towards more noble values. Moreover, the presence of a fine cork powder in the mortar had no adverse effect on its mechanical properties.

Keywords

References

  1. H. Bensabra, N. Azzouz, Study of rust effect on the corrosion behavior of reinforcement steel using impedance spectroscop, Metallurgical and Materials Transactions A, 44A, 5703 (2013). Doi: https://doi.org/10.1007/s11661-013-1915-4
  2. O. Poupard, M. Abdlkarim, P. Dumargue, Corrosion by chlorides in reinforced concrete: Determination of chloride concentration threshold by impedance spectroscopy, Cement and Concrete Research, 34, 991 (2004). Doi: https://doi.org/10.1016/j.cemconres.2003.11.009
  3. G. Batis and E. Rakanta, Corrosion of steel reinforcement due to atmospheric pollution, Cement and Concrete Composites, 27, 269 (2005). Doi: https://doi.org/10.1016/j.cemconcomp.2004.02.038
  4. K. Bhargava, A. K. Ghosh, Y. Mori, S. Ramanujam, Analytical model for time to cover cracking in RC structures due to rebar corrosion, Nuclear Engineering and Design, 236, 1123 (2006). Doi: https://doi.org/10.1016/j.nucengdes.2005.10.011
  5. C. Fang, K. Lundgren, M. Plos, K. Gyltoft, Bond behaviour of corroded reinforcing steel bars in concrete, Cement and Concrete Research, 36, 1931 (2006). Doi: https://doi.org/10.1016/j.cemconres.2006.05.008
  6. M. M. Kashani, L. N. Lowes, A. J. Crewe, N. A. Alexender, Finite element investigation of the influence of corrosion pattern on inelastic buckling and cyclic response of corroded reinforcing bars, Engineering Structures, 75, 113 (2014). Doi: https://doi.org/10.1016/j.engstruct.2014.05.026
  7. S. J. Pantazopoulou, K. D. Papoulia, Modeling Cover-Cracking due to Reinforcement Corrosion in RC Structures, Journal of Engineering Mechanics, 127, 342 (2001). Doi: https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(342)
  8. F. G. Da Silva, J. B. Libardi Liborio, A Study of Steel Bar Reinforcement Corrosion in Concretes with SF and SRH Using Electrochemical Impedance Spectroscopy, Materials Research, 9, 209 (2006). Doi: https://doi.org/10.1590/S1516-14392006000200018
  9. X. Zhang, Y. Zhang, B. Liu, B. Liu, W. Wu, C. Yang, Corrosion-induced spalling of concrete cover and its effects on shear strength of RC beams, Engineering Failure Analysis, 127, 105538 (2021). Doi: https://doi.org/10.1016/j.engfailanal.2021.105538
  10. B. M. Paulson, T. K. Joby, V. P. Raphael, K. S. Shaju, Prevention of Reinforcement Corrosion in Concrete by Sodium Lauryl Sulphate: Electrochemical and Gravimetric Investigations, International Journal of Corrosion, 2018, Article ID 9471694 (2018). Doi: https://doi.org/10.1155/2018/9471694
  11. J. G. Cabrera, Deterioration of concrete due to reinforcement steel corrosion, Cement and Concrete Composites, 18, 47 (1996). Doi: https://doi.org/10.1016/0958-9465(95)00043-7
  12. A. M. Vaysburd, P. H. Emmons, Corrosion inhibitors and other protective systems in concrete repair: concepts or misconcepts, Cement and Concrete Composites, 26, 255 (2004). Doi: https://doi.org/10.1016/S0958-9465(03)00044-1
  13. X. G. Feng, G. H. Dong, and J. Y. Fan, Effectiveness of an inorganic corrosion inhibitor in pore solution containing sodium chloride, Applied Mechanics and Materials, 556-562, 158 (2014). Doi: https://doi.org/10.4028/www.scientific.net/AMM.556-562.158
  14. A. U. Malik, I. Andijani, F. Al-Moaili, G. Ozair, Studies on the performance of migratory corrosion inhibitors in protection of rebar concrete in Gulf seawater environment, Cement and Concrete Composites, 26, 235 (2004). Doi: https://doi.org/10.1016/S0958-9465(03)00042-8
  15. M. Rahim, O. Douzane, A.D. Tran Le, G. Promis, B. Laidoudi, A. Crigny, B. Dupre, T. Langlet, Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity, Energy and Buildings, 88, 91 (2015). Doi: https://doi.org/10.1016/j.enbuild.2014.11.043
  16. F. Benmahiddine, F. Bennai, R. Cherif, R. Belarbi, A. Tahakourt, K. Abahri, Experimental investigation on the influence of immersion/drying cycles on the hygrothermal and mechanical properties of hemp concrete, Journal of Building Engineering, 32, 101758 (2020). Doi: https://doi.org/10.1016/j.jobe.2020.101758
  17. M. Lagouin, C. Magniont, P. Senechal, P. Moonen, J.E. Aubert, A. Laborel-preneron, Influence of types of binder and plant aggregates on hygrothermal and mechanical properties of vegetal concretes Construction and Building Materials, 222, 852 (2019). Doi: https://doi.org/10.1016/j.conbuildmat.2019.06.004
  18. Y. X. Chen, F. Wu, Q. Yu, H. J. H. Brouwers, Bio-based ultra-lightweight concrete applying miscanthus fibers: Acoustic absorption and thermal insulation, Cement and Concrete Composites, 114, 103829 (2020). Doi: https://doi.org/10.1016/j.cemconcomp.2020.103829
  19. M. Chabannes, J.C. Benezet, L. Clerc, E. Garcia-Diaz, Use of raw rice husk as natural aggregate in a lightweight insulating concrete: An innovative application, Construction and Building Materials, 70, 428 (2014). Doi: https://doi.org/10.1016/j.conbuildmat.2014.07.025
  20. B. Haba, B. Agoudjil, A. Boudenne, K. Benzarti, Hygric properties and thermal conductivity of a new insulation material for building based on date palm concrete, Construction and Building Materils, 154, 963 (2017). Doi: https://doi.org/10.1016/j.conbuildmat.2017.08.025
  21. A. Laborel-Preneron, C. Magniont, J.E. Aubert, Hygrothermal properties of unfired earth bricks: Effect of barley straw, hemp shiv and corn cob addition, Energy and Buildings, 178, 265 (2018). Doi: https://doi.org/10.1016/j.enbuild.2018.08.021
  22. A. Achour, F. Ghomari, N. Belayachi, Properties of cementitious mortars reinforced with natural fibers, Journal of Adhesion Science and Technology, 31, 1938 (2017). Doi: https://doi.org/10.1080/01694243.2017.1290572
  23. M. R. Ahmad, B. Chen, A. Haque, S. Farasat, A. Shah, Development of a sustainable and innovant hygrothermal bio-composite featuring the enhanced mechanical properties, Journal of Cleaner Production, 229, 128 (2019). Doi: https://doi.org/10.1016/j.jclepro.2019.05.002
  24. H. Pereira, Cork: biology, production and uses, p. 364, Elsevier Science (2011).
  25. S. Knapic, V. Oliveira, J.S. Machado, H. Pereira, Cork as a building material: a review, European Journal of Wood and Products, 74, 775 (2016). Doi: https://doi.org/10.1007/s00107-016-1076-4
  26. F. G. Branco, A. Tadeu, M. L. Reis, Can cork be used as a concrete aggregate, International Journal for Housing Sciences, 31, 1 (2007).
  27. M. A. Aziz, C. K. Murphy, S. D. Ramaswamy, Lightweight concrete using cork granules, International Journal of Cement Composites and Lightweight Concrete, 1, 29 (1979). Doi: https://doi.org/10.1016/0262-5075(79)90006-X
  28. F. G. Branco, A. Tadeu, M. Belgas, C. Reis, Experimental evaluation of the durability of cork concrete, International Journal for Housing Sciences, 32, 149 (2008). http://www.housingscience.org/html/publications/pdf/32-2-6.pdf
  29. S. P. Silva, M. A. Sabino, E. M. Fernandes, V. M. Correlo, L. F. Boesel, R. L. Reis, Cork: Properties, capabilities and applications, International Materials Reviews, 50, 345 (2005). Doi: https://doi.org/10.1179/174328005X41168
  30. H. Pereira, Cork: Biology, Production and Uses, p. ?, Elsevier Science (2007). Doi: https://doi.org/10.1016/B978-0-444-52967-1.X5000-6
  31. A. S. Tartaro, T. M. Mata, A. A. Martins, J. C. G. Esteves, da Silva, Carbon footprint of the insulation cork board, Journal of Cleaner Production, 143, 925 (2016). Doi: https://doi.org/10.1016/j.jclepro.2016.12.028
  32. A. K. Tedjditi, F. Ghomari, R. Belarbi, R. Cherif, F. Boukhelf, R. T. Bouhraoua, Towards understanding cork concrete behaviour: Impact of considering cork absorption during mixing process, Construction and Building Materials, 317, 125905 (2022). Doi: https://doi.org/10.1016/j.conbuildmat.2021.125905
  33. A. Borges, I. Flores-Colen, J. de Brito, Physical and mechanical performance of cement-based renders withd ifferent contents of fly ash, expanded cork granules and expanded clay, Construction and Building Materials, 191, 535 (2018). Doi: https://doi.org/10.1016/j.conbuildmat.2018.10.043
  34. R. M. Novais, L. Senff, J. Carvalheiras, M. P. Seabra, R. C. Pullar, J. A. Labrincha, Sustainable and efficient cork - inorganic polymer composites: An innovative and ecofriendly approach to produce ultra-lightweight and low thermal conductivity materials, Cement and Concrete Composites, 97, 107 (2019). Doi: https://doi.org/10.1016/j.cemconcomp.2018.12.024
  35. A. K. Tedjditi, F. Ghomari, O. Taleb, R. Belarbi, R. Tarik Bouhraoua, Potential of using virgin cork as aggregates in development of new lightweight concrete, Construction and Building Materials, 265, 120734 (2020). Doi: https://doi.org/10.1016/j.conbuildmat.2020.120734
  36. Y. Liu, Z. Cao, Y. Wang, D. Wang, J. Liu, Experimental study of hygro-thermal characteristics of novel cement-cork mortars, Construction and Building Materials, 271, 121901 (2021). Doi: https://doi.org/10.1016/j.conbuildmat.2020.121901
  37. A. Mafalda Matos, S. Nunes, J. Sousa-Coutinho, Cork waste in cement based materials, Materials & Design, 85, 230 (2015). Doi: https://doi.org/10.1016/j.matdes.2015.06.082
  38. F. G. Branco, M. L. B. C. Reis, A. Tadeu, Utilizacao da cortica como agregado em betoes (Use of cork as an aggregate in concrete) Encontro Nacional sobre Qualidade e Inovacao na Construcao QIC (2006).
  39. B. Gonzalez, B. Llamas, A. Juan, I. Guerra, Ensayos de hormigones fabricados con polvo de corcho. Tests on concrete containing cork powder admixtures, Materials de Construction, 57, 83 (2007). Doi: https://doi.org/10.3989/mc.2007.v57.i286.49