• Title/Summary/Keyword: lighting control

Search Result 816, Processing Time 0.032 seconds

3D Pointing for Effective Hand Mouse in Depth Image (깊이영상에서 효율적인 핸드 마우스를 위한 3D 포인팅)

  • Joo, Sung-Il;Weon, Sun-Hee;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.35-44
    • /
    • 2014
  • This paper proposes a 3D pointing interface that is designed for the efficient application of a hand mouse. The proposed method uses depth images to secure high-quality results even in response to changes in lighting and environmental conditions and uses the normal vector of the palm of the hand to perform 3D pointing. First, the hand region is detected and tracked using the existing conventional method; based on the information thus obtained, the region of the palm is predicted and the region of interest is obtained. Once the region of interest has been identified, this region is approximated by the plane equation and the normal vector is extracted. Next, to ensure stable control, interpolation is performed using the extracted normal vector and the intersection point is detected. For stability and efficiency, the dynamic weight using the sigmoid function is applied to the above detected intersection point, and finally, this is converted into the 2D coordinate system. This paper explains the methods of detecting the region of interest and the direction vector and proposes a method of interpolating and applying the dynamic weight in order to stabilize control. Lastly, qualitative and quantitative analyses are performed on the proposed 3D pointing method to verify its ability to deliver stable control.

Stylized Specular Reflections Using Projective Textures based on Principal Curvature Analysis (주곡률 해석 기반의 투영 텍스처를 이용한 스타일 반사 효과)

  • Lee, Hwan-Jik;Choi, Jung-Ju
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • Specular reflections provide the visual feedback that describes the material type of an object, its local shape, and lighting environment. In photorealistic rendering, there have been a number of research available to render specular reflections effectively based on a local reflection model. In traditional cel animations and cartoons, specular reflections plays important role in representing artistic intentions for an object and its related environment reflections, so the shapes of highlights are quite stylistic. In this paper, we present a method to render and control stylized specular reflections using projective textures based on principal curvature analysis. Specifying a texture as a pattern of a highlight and projecting the texture on the specular region of a given 3D model, we can obtain a stylized representation of specular reflections. For a given polygonal model, a view point, and a light source, we first find the maximum specular intensity point, and then locate the texture projector along the line parallel to the normal vector and passing through the point. The orientation of the projector is determined by the principal directions at the point. Finally, the size of the projection frustum is determined by the principal curvatures corresponding to the principal directions. The proposed method can control the position, orientation, and size of the specular reflection efficiently by translating the projector along the principal directions, rotating the projector about the normal vector, and scaling the principal curvatures, respectively. The method is be applicable to real-time applications such as cartoon style 3D games. We implement the method by Microsoft DirectX 9.0c SDK and programmable vertex/pixel shaders on Nvidia GeForce FX 7800 graphics subsystems. According to our experimental results, we can render and control the stylized specular reflections for a 3D model of several ten thousands of triangles in real-time.

  • PDF

Effect of Vapor Pressure Deficit on the Evapotranspiration Rate and Graft-taking of Grafted Seedling Population under Artificial Lighting (인공광하에서 접목묘 개체군의 증발산속도와 활착에 미치는 포차의 영향)

  • Yong Hyeon Kim;Chul Soo Kim;Ji Won Lee;Sang Gyu Lee
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.232-236
    • /
    • 2001
  • Four air temperature levels of 23, 25, 27 and 29$^{\circ}C$, three humidity levels of 85, 90 and 95% R.H. at photosynthetic photon flux (PPF) of 50 $\mu$mol.m$^{-2}$ .s$^{-1}$ were provided to investigate the effect of vapor pressure deficit on the evapotranspiration rate (EVTR) and graft-taking of watermelon grafted seed-increase. Thus EVTR of grafted seedlings increased with increasing air temperature at high humidity of 95%R.H. At relatively low humidity of 85% R.H., grafted seedlings showed a high EVTR and some wilting of scions was observed at this condition. This result would be ascribed to the low supply of water to vascular bundles according to the insufficient joining of scions and rootstocks. Differences in EVTR between 90% R.H. and 95% R.H. were not observed. Grafted seedlings showed high graft-taking at high relative humidity. Relative humidity had highly influenced to the graft-taking as compared to the air temperature. Graft-taking increased with decreasing vapor pressure deficit. Graft-taking greater than 90% was found at vapor pressure deficit less than 0.4kPa which could be obtained at humidity higher than 90% R.H. Therefore it is required to control the humidity higher than 90% R.H. for suppressing EVTR of grafted seedlings and preventing some wilting of scoins and thus enhancing the graft-taking of grafted seedlings.

  • PDF

System Design and Performance Analysis of a Variable Frequency LED Light System for Plant Factory

  • Han, Jae Woong;Kang, Tae Hwan;Lee, Seong Ki;Han, Chung Su;Kim, Woong
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.87-95
    • /
    • 2014
  • Purpose: The purpose of this study was to design a variable frequency LED light system for plant factory which combined red, blue, green, white, and UV lights and controlled the ratio of the light wavelength. In addition, this study evaluated the performance of each combination of LED to verify the applicability. Methods: Four combinations of LED (i.e. Red+Blue, Red+Blue+Green, Red+Blue+White, Red+Blue+UV) were designed using five types of LED. The system was designed to control the duty ratio of each wavelength of LED by 1% interval from 0~100%, the pulse by 1Hz interval from 1~20kHz. Response characteristics of the control system, spectral distribution of each combination, light uniformity and uniformity ratio were measured to test the performance of the system. Results: Clean waveforms were measured from 10Hz to 10kHz regardless of duty ratio. Frequency distortion was observed within 5% of inflection point at frequencies above 10kHz regardless of duty ratio, but it was judged negligible. Spectra showed a normal distribution, and maximum PPF with duty ratio of 100% was $271.4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for the Red+Blue combination. PPF of the Red+Blue+Green combination was $258.9{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and that of the Red+Blue+White combination was $273.9{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. PPF of the Red+Blue+UV combination was $267.7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Uniformity ratio for the area excepting border showed 0.90 for the Red+Blue and Red+Blue+White combinations, 0.87 for the Red+Blue+Green combination, and 0.88 for the Red+Blue+UV combination. The light was irradiated evenly at the area excepting border, so it was suitable for plant growing. Conclusions: From the results of this study, response characteristics of the control system, spectral distribution of each combination, light uniformity and uniformity ratio were suitable for applying into the plant factory.

Effect of Salinity-stratified Waters on Upward Migration and Ratio of Extracted DNA/RNA in Cochlodinium polykrikoides Margalef Based on the Ratio of Absorbance at 260 and 280nm (염분 구배가 Cochlodinium polykrikoides Margalef의 수직이동 및 DNA/RNA 비율에 미치는 영향)

  • Cho Eun Seob;Lee Young Sik
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.468-473
    • /
    • 2005
  • The coastal regions of Yeosu, the South Sea of Korea, has occurred annually the red tide which is caused by potentially ichthyotoxic dinoflagellate C. polykrikoides, with a wide avenue for exchange with oceanic waters and freshwater runoff from Sumjin river. We attempted to examine the variability in response to vertical migration and concentration of extracted DNA/RNA of C. polykrikoides exposed to salinity-stratified waters. The experimental aquarium of the 60 liter was employed to culture C. polykrikoides. One aquarium was supplied with only sea water, the other was consisted of sea water and freshwater. Experiment was conducted for 5 days. In experimental column (mixture of freshwater and sea water), salinity was maintained to 20 at upper and approximately 30 at bottom during the period of this study. The fluctuation with related to dissolved oxygen and pH was similar pattern to both columns. Chlorophyll a was significantly higher value at upper than bottom. During 24h, chlorphyll a on experimental column was extremely high on the top as soon as lighting, compared with control. With elapsed time, the gap between experimental and control columns was a little. In darkness, chlorophyll a was not significantly different between upper and bottom, most cells appeared to randomly distribute on column regardless of water layer. Fluctuation with related to concentration of extracted DNA and RNA based on ratio of absorbance of 260 and 280 nm in experimental column was higher at final day or diel migration than control. These results implied that a large volume of freshwater could be associated with influence of concentration of DNA and RNA, in particular, rapid upward movement caused massive fish kills as soon as sunset.

Spatial, Vertical, and Temporal Variability of Ambient Environments in Strawberry and Tomato Greenhouses in Winter

  • Ryu, Myong-Jin;Ryu, Dong-Ki;Chung, Sun-Ok;Hur, Yun-Kun;Hur, Seung-Oh;Hong, Soon-Jung;Sung, Je-Hoon;Kim, Hak-Hun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 2014
  • Purpose: In protected crop production facilities such as greenhouse and plant factory, farmers should be present and/or visit frequently to the production site for maintaining optimum environmental conditions and better production, which is time and labor consuming. Monitoring of environmental condition is highly important for optimum control of the conditions, and the condition is not uniform within the facility. Objectives of the paper were to investigate spatial and vertical variability in ambient environmental variables and to provide useful information for sensing and control of the environments. Methods: Experiments were conducted in a strawberry-growing greenhouse (greenhouse 1) and a cherry tomato-growing greenhouse (greenhouse 2). Selected ambient environmental variables for experiment in greenhouse 1 were air temperature and humidity, and in greenhouse 2, they were air temperature, humidity, PPFD (Photosynthetic Photon Flux Density), and $CO_2$ concentration. Results: Considerable spatial, vertical, and temporal variability of the ambient environments were observed. In greenhouse 1, overall temperature increased from 12:00 to 14:00 and increased after that, while RH increased continuously during the experiments. Differences between the maximum and minimum temperature and RH values were greater when one of the side windows were open than those when both of the windows were closed. The location and height of the maximum and minimum measurements were also different. In greenhouse 2, differences between the maximum and minimum air temperatures at noon and sunset were greater when both windows were open. The maximum PPFD were observed at a 3-m height, close to the lighting source, and $CO_2$ concentration in the crop growing regions. Conclusions: In this study, spatial, vertical, and temporal variability of ambient crop growing conditions in greenhouses was evaluated. And also the variability was affected by operation conditions such as window opening and heating. Results of the study would provide information for optimum monitoring and control of ambient greenhouse environments.

A Priority and Impact Factor Analysis of Construction Management Tasks for Decreasing Change Orders and Defect Repairs in Cancer Treatment Center Projects (암센터 의료시설의 설계변경과 하자보수의 감소를 위한 중점 관리공사 분석)

  • Lee, Chijoo;Lee, Ghang;Sim, Jaekyang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.55-64
    • /
    • 2013
  • The complexity of constructing medical institutions is higher than that of general buildings, and many change orders in the design and defect repairs in the construction phase are required due to strict government regulations. The priority control of constructions and impact factors of medical institutions were analyzed in this study, and difficulties in the control in the design and construction phase were identified. First, the priority management factors that were identified were as follows: architecture, facilities, and electricity. Second, 1) priority management in constructions and factors resulting in change orders and 2) priority management in constructions involving defect repair were analyzed. Third, the importance recognized by the construction managers were analyzed. The priority management in constructions and factors that were recognized by the construction manager were deducted as having low importance, although there were many change orders and defects. The work of finishing, wall building, joining, office automation and communication function, and lighting were analyzed in the design phase, and waste, the office automation and communication function, ceilings, contamination control, and plumbing were analyzed in the construction phase. The results showed that there will be a decrease in change orders and defects if the concentration of the manager was elevated and priorities were managed.

The Effect of Natural Disaster Safety Education on Young Children's Safety Problem-solving Abilities and Eco-friendly Attitudes (자연재해 안전교육이 유아의 안전문제해결사고 및 환경 친화적 태도에 미치는 영향)

  • Lim, Eun Ok;Kim, Ji Eun
    • Korean Journal of Child Education & Care
    • /
    • v.18 no.4
    • /
    • pp.227-245
    • /
    • 2018
  • Objective: In this study, educational activities were organized to emphasize the importance of natural disaster safety education by reflecting the recent rapid increases in natural disasters. The study focused on story-sharing, art, and game activities to effectively conduct natural disaster safety education for four-year-old children, and in doing so, aimed to improve the children's safety problem-solving abilities and eco-friendly attitude. Methods: Based on the types of natural disasters that are handled by the Ministry of Public Administration and Security and the Chungcheongbuk-do Office of Education, earthquakes, yellow dust, heat waves, floods, typhoons, bolts of lighting, fires, snowstorms, and global warming were included as the study's educational contents, and a total 20 sessions of natural disaster safety education activities were planned. For the subjects, 20 four-year-old children at K Kindergarten attached to a school were selected as an experimental group and 20 four-year-old children at N Kindergarten attached to a school were selected as a control group. Both kindergartens were located in C City, Chungcheongbuk-do. The experimental group was instructed to perform the study's education activities, whereas the control group only carried out general activities based on the Nuri Curriculum's subjects of daily life. Results: As a result, the children in the experimental group, who received the natural disaster safety education, improved their safety problem-solving abilities and eco-friendly attitude when compared to those in the control group. This outcome proved that the natural disaster safety education conducted by the present study offers educational activities that can positively affect improvements in children's safety problem-solving abilities and eco-friendly attitude. Conclusion/Implications: Therefore, the present study is likely to provide concrete information to teachers who plan to conduct natural disaster safety education in the actual early childhood education field.

Analysis of the Relationship between Melon Fruit Growth and Net Quality Using Computer Vision and Fruit Modeling (컴퓨터 비전과 과실 모델링을 이용한 멜론 과실 생장과 네트 품질의 관계 분석)

  • Seungri Yoon;Minju Shin;Jin Hyun Kim;Ji Wong Bang;Ho Jeong Jeong;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.456-465
    • /
    • 2023
  • Melon fruits exhibit a wide range of morphological variations in fruit shape, sugar content, net quality, diameter and weight, which are largely dependent on the variety. These characteristics significantly affect marketability. For netted varieties, the uniformity and pattern of the net serve as key factors in determining the external quality of the melon and act as indicators of its internal quality. In this study, we evaluated the effect of fruit morphology and growth on netting by analyzing the changes in melon fruit quality under LED light treatment and monitoring fruit growth. Computer vision analysis was used for quantitative evaluation of fruit net quality, and a three-variable logistic model was applied to simulate fruit growth. The results showed that melons grown under LED conditions exhibited more uniform fruit shape and improvements in both net quality and sugar content compared to the control group. The results of the logistic model showed minimal error values and consistent curve slopes across treatments, confirming its ability to accurately predict fruit growth patterns under varying light conditions. This study provides an understanding of the effects of fruit shape and growth on net quality.