DOI QR코드

DOI QR Code

Effect of Salinity-stratified Waters on Upward Migration and Ratio of Extracted DNA/RNA in Cochlodinium polykrikoides Margalef Based on the Ratio of Absorbance at 260 and 280nm

염분 구배가 Cochlodinium polykrikoides Margalef의 수직이동 및 DNA/RNA 비율에 미치는 영향

  • 조은섭 (국립수산과학원 남해수산연구소) ;
  • 이영식 (국립수산과학원 남해수산연구소)
  • Published : 2005.06.01

Abstract

The coastal regions of Yeosu, the South Sea of Korea, has occurred annually the red tide which is caused by potentially ichthyotoxic dinoflagellate C. polykrikoides, with a wide avenue for exchange with oceanic waters and freshwater runoff from Sumjin river. We attempted to examine the variability in response to vertical migration and concentration of extracted DNA/RNA of C. polykrikoides exposed to salinity-stratified waters. The experimental aquarium of the 60 liter was employed to culture C. polykrikoides. One aquarium was supplied with only sea water, the other was consisted of sea water and freshwater. Experiment was conducted for 5 days. In experimental column (mixture of freshwater and sea water), salinity was maintained to 20 at upper and approximately 30 at bottom during the period of this study. The fluctuation with related to dissolved oxygen and pH was similar pattern to both columns. Chlorophyll a was significantly higher value at upper than bottom. During 24h, chlorphyll a on experimental column was extremely high on the top as soon as lighting, compared with control. With elapsed time, the gap between experimental and control columns was a little. In darkness, chlorophyll a was not significantly different between upper and bottom, most cells appeared to randomly distribute on column regardless of water layer. Fluctuation with related to concentration of extracted DNA and RNA based on ratio of absorbance of 260 and 280 nm in experimental column was higher at final day or diel migration than control. These results implied that a large volume of freshwater could be associated with influence of concentration of DNA and RNA, in particular, rapid upward movement caused massive fish kills as soon as sunset.

여수연안은 어류 치사성 유해적조생물인 C. polykrikoides 적조가 매년 발생되는 해역일 뿐만 아니라 섬진강으로부터 담수유입이 돌산을 중심으로 많은 영향을 받고 있다. 담수유입에 따른 염분도 변화가 C. polykrikoides의 수직이동에 영향을 미칠 수 있는 지를 조사했다. 실험장치는 60l들이 아크릴 수조에 일반해수와 담수와 해수를 혼합시킨 시험구를 설정하여 C.polykrikoides의 수직부상 속도와 DNA/RNA함량 비교를 하였다. 실험은 5일 동안 시행했다. 실험개시로부터 종료시까지 시험구의 경우 상층부위에서는 염분이 20으로 나타난 반면에, 하층은 30 정도로 유지되었다. 그러나 용존산소와 pH 변화는 시험구와 대조구 모두 비슷한 양상을 보였다. 또한 chlorophyll a도 수조의 하층보다 상층에 높은 수치를 보였다. 24시간동안 C. polykrikoides 상$\cdot$하층 이동을 조사한 결과 점등이 되는 순간 시험구는 대조구에 비하여 월등히 높은 상승을 보였으나, 시간이 경과함에 따라 그 차이는 적었다. 소등이 되는 동안은 점등에 비하여 상$\cdot$하층 현저한 차이를 볼 수 없고 대부분 균일하게 분포하는 양상을 보였다. 또한 실험 종료시나 24시간 주 $\cdot$야간 수직이동 시 대조구에 비하여 시험구에 분포하고 있는 C. polykrikoides의 DNA 및 RNA 변화폭이 높았다 이 실험을 통하여 담수유입은 C. polykrikoides 세포에 많은 영향을 미칠 수 있을 것으로 보이며, 특히 신속한 수직상승으로 인하여 여기에 대한 C. polykrikoides의 모니터링이 절실히 요구되는 바이다.

Keywords

References

  1. Ambler, J. W., J. E. Cloern and A. Hutchinson. 1985. Seasonal cycles of zooplankton from San Franciso Bay. Hydrobiol. 129, 177-197 https://doi.org/10.1007/BF00048694
  2. Bell, K. N. J. and J. A. Brown. 1995. Active salinity choice and enhanced swimming endurance in 0 to 8-d-old larvae of diadromous gobies, including Sicydium punctatum (Pisces), in Dominica, West Indies. Mar. Biol. 121, 409-417 https://doi.org/10.1007/BF00349450
  3. Cho, E. S., C. S. Kim, S. G. Lee and Y. K. Chung. 1999. Binding of aldan blue applied to harmful microalgae from Korean coastal waters. Bull. Nat'l Fish. Res. Dev. Inst. 55, 133-138
  4. Dortch, Q. and T. T. Packard. 1989. Differences in biomass structure between oligotrophic and eutrophic marine ecosystems. Deep Sea Res. 36, 223-240 https://doi.org/10.1016/0198-0149(89)90135-0
  5. Eggersdorfer, B. and D. P. Hader. 1991. Phototaxis, gravitaxis and vertical migration in the marine dinoflagellate Prorocentrum micans. FEMS Micro. Ecol. 85, 319-326 https://doi.org/10.1111/j.1574-6968.1991.tb04758.x
  6. Eppley, R. W., O. Holm-Hansen and D. H. Strickland. 1968. Some observations on the vertical migration of dinoflagellates. J. Phycol. 4, 333-340 https://doi.org/10.1111/j.1529-8817.1968.tb04704.x
  7. Figueroa, F. I., F. X. Niell and F. G. Figueiras. 1998. Diel migration of phytoplankton and spectral light field in the Ria de Vigo (NW Spain). Mar. Biol. 130, 491-499 https://doi.org/10.1007/s002270050269
  8. Guillard, R. R. J. and J. H. Ryther. 1962. Studies of marine planktonic diatoms 1. Cyclotella nana Hustedt, and Detonula conferuacea (Cleve) Gran. Can. J. Microbiol. 8, 229-239 https://doi.org/10.1139/m62-029
  9. Hays, G. C. 1995. Ontogenetic and seasonal variation in the diel vertical migration of the copepods Metridia lucens and Metridia longa. Limnol. Oceanogr. 40, 1461-1465 https://doi.org/10.4319/lo.1995.40.8.1461
  10. Holm-Hansen, O., W. H. Sutcliffe and J. Sharp. 1968. Measurement of deoxybibonucleic acid in the ocean and its ecological significance. Limnol. Oceanogr. 13, 507-514 https://doi.org/10.4319/lo.1968.13.3.0507
  11. Iwamura, T., K. Kanazawa, Y. Shibata, S. Morimura, S. Ichimura, O. Maeda and H. Tamiya. 1967. Preliminary studies on the feasibility of microanalytic measurement of planktonic populations. J. Oceanog. Soc. Jpn. 23, 247-251
  12. Kamykowski,. D.1995. Trajectories of autotrophic marine dinoflagellates. J. Phycol. 31, 200-208 https://doi.org/10.1111/j.0022-3646.1995.00200.x
  13. Kamykowski, D., S. A. McCollum and G. J. Kirkpatrick. 1988. Observations and a model concerning the tranlational velocity of a photosythetic marine dinoflagellate under variable environmental conditions. Limnol. Oceanogr. 33, 66-78 https://doi.org/10.4319/lo.1988.33.1.0066
  14. Karl, D. M., C. D. Winn and D. C. J. Wong. 1981. RNA synthesis as a measure of the microbial growth in aquatic environments. J. Evaluation, verification and optimization of methods. Mar. BioI. 64, 1-12 https://doi.org/10.1007/BF00394075
  15. Kinne, O. 1966. Physiological aspects of animal life in estuaries with special reference to salinity. Neth. J. Sea Res. 3, 222-244 https://doi.org/10.1016/0077-7579(66)90013-5
  16. Lee, S. W. 1996. An outline of oceanophysics, Jipmundang Press, Seoul. 225 pp
  17. Lieberman, O. S., M. Shilo and J. van Rijin. 1994. The physiological ecology of a freshwater dinoflagellate bloom population; vertical migration, nitrogen limitation, and nutrient uptake kinetics. J. Phycol. 30, 964-971 https://doi.org/10.1111/j.0022-3646.1994.00964.x
  18. MacIntyre, J. G., J. J. Cullen and A. D. Cembella. 1997. Vertical migration, nutrition and toxicity in the dinoflagellate Alexadrium tamarense. Mar. Ecol. Prog. Ser. 148, 201-216 https://doi.org/10.3354/meps148201
  19. Mann, R., B. M. Campos and M. W. Luckenbach. 1991. Swimming rate and responses of larvae of three mactrid bivalves to salinity discontinuities. Mar. Ecol. Prog. Ser. 68, 257-269
  20. Morgan, C. A, J. R. Cordell and C. A Simenstad. 1997. Sink or swim? Copepod population maintenance in the Columbia River estuarine turbidity-maxima region. Mar. Biol. 129, 309-317 https://doi.org/10.1007/s002270050171
  21. Park, J. G, M. K. Jeong, J. A Lee, K. J. Cho and O. S. Kwon. 2001. Diurnal vertical migration of a harmful dinoflagellate, Cochlodinium polykrikoides (Dinophyceae), during a red tide in coastal waters of Namhae Island, Korea. Phycologia 40, 292-297 https://doi.org/10.2216/i0031-8884-40-3-292.1
  22. Seung, Y. H. 1992. Water masses and circulations around Korean peninsula, J. Oceanogr. Soc. Korea. 27, 324-331
  23. Vazquez, E. and C. M. Young. 1990. Responses of compound ascidean larvae to haloclines. Mar. Ecol. Prog. Ser. 133, 179-190 https://doi.org/10.3354/meps133179
  24. Watanabe, M., K. Kohata and T. Kimura. 1995. Generation of a Chattonella antiqua bloom by imposing a shallow nutricline in a mesocosm. Limnol. Oceanogr. 40, 1447-1460 https://doi.org/10.4319/lo.1995.40.8.1447
  25. Weiler, C. S. and D. M. Karl. 1979. Diel changes in phaseddividing cultures of Ceratium furea (Dinophyceae): nucleotide triphosphate, adenylate energy change, cell carbon, and patterns of vertical migration. J. Phycol. 15, 384-391 https://doi.org/10.1111/j.1529-8817.1979.tb04401.x
  26. Yamazaki, A. K. and D. Kamykowski. 2000. A dinoflagellate adaptive behavior model: response to internal biochemical cues. Ecol. Model. 134, 59-72 https://doi.org/10.1016/S0304-3800(00)00336-7
  27. 국립수산진흥원. 2000. 1999년도 한국연안의 적조발생상황. 206 pp

Cited by

  1. Factors controlling the origin of Cochlodinium polykrikoides blooms along the Goheung coast, South Korea vol.113, pp.1-2, 2016, https://doi.org/10.1016/j.marpolbul.2016.09.001
  2. Marine Environmental Characteristics of Goheung Coastal Waters during Cochlodinium polykrikoides Blooms vol.18, pp.3, 2015, https://doi.org/10.7846/JKOSMEE.2015.18.3.166