• Title/Summary/Keyword: light-weight concrete

Search Result 275, Processing Time 0.031 seconds

Analytical Studies on the Shear Behavior of the Shear Connector in Composite Beam with Light Weight Concrete (경량콘크리트를 사용한 합성보에서 전단연결재의 전단거동에 관한 해석적 연구)

  • Choi, Byong Jeong;Han, Hong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.127-134
    • /
    • 2009
  • The purpose of this paper is to understand the shear characteristics of the shear connectors embedded into light weight concrete. This paper tried to confirm the validity of the finite element method(FEM) through the comparative study between the previous study results and FEM analysis, and evaluated the shear strength of shear connector and current design codes(AISC-LRFD and Eurocode 4) according to the variation of compressive strength of light weight concrete. This paper resulted that the shear strength of connector embedded into light weight concrete closely agreed to the one of shear connector by Eurocode 4 based on the results of the FEM analysis.

Evaluation of Mechanical Properties of Porous and Pervious Light-weight Concrete by Mixing Proportion (다공성, 투수성 경량콘크리트의 배합비에 따른 물리적 특성 평가)

  • Ahn, Hwi-Soon;Shin, Hyun-Oh;SeonWoo, Yoon-Ho;Song, Si-Bum;Jung, Kwang-Sik;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.305-306
    • /
    • 2010
  • Recently, concrete have been used not only for structural purpose but also for various other purposes. The goal of this research is to develop porous and pervious light-weight concrete in order to apply to filters, which primarily treats rain water. Because Porous and pervious light-weight concrete is discontinuum with large amount of porosity, its physical characteristic is completely different from that of ordinary concrete. The basic properties such as the change in porosity rate depending on mixing proportion and the mechanical characteristics of porous and pervious light-weight concrete were experimentally evaluated.

  • PDF

A Study on the acoustic characteristic of the Light weight Concrete Pallet using bottom ash (Bottom ash를 이용한 경량판넬의 특성 연구(2))

  • Jeong, G.C.;Lee, S.H.;Chung, J.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.384-387
    • /
    • 2006
  • Recently, the method of the apartment building design has been changed from wall type structures to moment structures. With like this reason, dry walls we used plentifully. Especially, the gypsum board was used from previously plentifully however the weak point of it is difficult to maintain because it weak strength. For the improvement of gypsum board, light weight concrete panel using cement board is used recently. As this study is the research of the series t on the development of non-bearing light weight concrete panel using bottom ash, the purpose of this study is to obtain basic data for application in the field. The results are that the structure 1 satisfies domestic standard concerned with sound insulation between households at the laboratory and field test.

  • PDF

A Study on the acoustic characteristic of the Light weight Concrete Panel using bottom ash (Bottom ash를 이용한 경량판넬의 특성 연구)

  • Lee, S.H.;Jeong, G.C.;Chung, J.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1379-1382
    • /
    • 2006
  • Recently, the method of the apartment building design has been changed from wall type structures to moment structures. With like this reason dry walls are used plentifully. Especially, the gypsum board was used from previously plentifully however the weak point of it is difficult to maintain because it weak strength. For the improvement of gypsum board, light weight concrete panel using cement board is used recently. As this study is the research of the series t on the development of non-hearing light weight concrete Panel using bottom ash, the Purpose of this study is to obtain basic data for application in the field. The results are that the structure 1 satisfies domestic standard concerned with sound insulation between households at the laboratory and field test.

  • PDF

A Study on the Acoustic Characteristic of the Light Weight Concrete Panel Using Bottom Ash (저회를 이용한 경량판넬의 특성 연구)

  • Jeong, G.C.;Chung, J.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.149-154
    • /
    • 2007
  • Recently, the method of the apartment building design is changing from wall type to moment structure. Dry walls are used plentifully. Until now, the gypsum board is used mainly but it has many problems. For improving the problems, the light weight concrete panel using cement board is used recently. The purpose of this study is to obtain basic data for the light weight concrete panel using bottom ash. As a result, some structures satisfies domestic standard concerned with sound insulation between households at the laboratory and field test.

A Fundamental Study on the Properties of Artifitial Light Weight Aggregate Concrete Blending with the Micro Powders of Mudstone (이암미분말을 혼합한 인공경량골재 콘크리트의 성질에 관한 기초적 연구)

  • 안상건;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.29-34
    • /
    • 1992
  • In this experimental study, we aimed at the improvement of compressive strength of artifitial light weight aggregate concrete by using the micro powders of mudstone for concrete admixture. By it's result, there was about 10% increase of compressive strength in concrete adding the 10% amounts of powders for cement contents than that of plain concrete.

  • PDF

(An) experimental study on the development of lightweight concrete using the PCM (PCM 혼입 경량기포콘크리트 패널 개발을 위한 기초적 연구)

  • Lim, Myung Kwan;Enkhbold, Odontuya;Kim, Young Ho;Choi, Dong Uk
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.133-138
    • /
    • 2014
  • The present study was carried out to assess the basic material properties and thermal behavior of light-weight foamed concrete panel mixed with PCM (Phase Changing Material). To do so, this study fabricated light-weight foamed concrete (1.0kg/m3) in pre-foaming method and mixed it with PCM micro capsule of 1-dodecanol and melamine to examine its physical and thermal properties. The results confirmed strength reinforcement effect by proper replacement ratio of fly-ash, which is an industrial by-product, and PCM. In addition, it found out that PCM-mixed light-weight foamed concrete had time delay and temperature reduction effect within the range of PCM phase transition according to the rise of outdoor temperature. It was also observed that the insulation performance of PCM-mixed light-weight foamed concrete was more dependent upon thickness than PCM replacement ratio.

Compressive strength and mixture proportions of self-compacting light weight concrete

  • Vakhshouri, Behnam;Nejadi, Shami
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.555-566
    • /
    • 2017
  • Recently some efforts have been performed to combine the advantages of light-weight and self-compacting concrete in one package called Light-Weight Self-Compacting Concrete (LWSCC). Accurate prediction of hardened properties from fresh state characteristics is vital in design of concrete structures. Considering the lack of references in mixture design of LWSCC, investigating the proper mixture components and their effects on mechanical properties of LWSCC can lead to a reliable basis for its application in construction industry. This study utilizes wide range of existing data of LWSCC mixtures to study the individual and combined effects of the components on the compressive strength. From sensitivity of compressive strength to the proportions and interaction of the components, two equations are proposed to estimate the LWSCC compressive strength. Predicted values of the equations are in good agreement with the experimental data. Application of lightweight aggregate to reduce the density of LWSCC may bring some mixing problems like segregation. Reaching a higher strength by lowered density is a challenging problem that is investigated as well. The results show that, the compressive strength can be improved by increasing the of mixture density of LWSCC, especially in the range of density under $2000Kg/m^3$.

Fire Resistance Performance of High Strength-Light Weight Concrete (고강도를 적용한 1종 경량골재 콘크리트의 내화특성)

  • Song, Hun;Lee, Jong-Chan;Lee, Sea-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.749-752
    • /
    • 2005
  • Normally, the degradation of concrete member exposed to fire is largely dependent on the fire scale and fire condition. With all ensuring the fire resistance structure as a method of setting the required cover thickness to fire, the RC is significantly affected from the standpoint of its structural stability that the compressive strength and elastic modulus is reduced by fire. Thus, this study is concerned with experimentally investigating fire resistance of high strength-light weight concrete. From the test result, high strength-light weight concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

  • PDF

A Study of Mechanical characteristics of functional Autoclaved Lightweight Concrete (기능성 경량기포콘크리트의 물리적 특성에 관한 실험적 연구)

  • Kim, Soon-Ho;Kim, Hong-Yong
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.121-126
    • /
    • 2007
  • This is the experimental study on the functional property of the light-weight concrete according to the mineral composite. According to the increase of the functional mineral, Autoclaved light-weight concrete (ALC) have a effect of high far infrared ray, deodorization, anion and change of chromaticity on D65 of light source. Compressive strength and change of specific gravity by foaming of Mixed Slurry in accordance with additive rates and Water. It chracterizes surface by SEM, chemical component and crystallization by XRD, XRF. the results of this experiment studied influences of ALC by functional minerals.