• Title/Summary/Keyword: light-weight concrete

Search Result 275, Processing Time 0.035 seconds

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.

An acoustic evaluation of bottom-ash light-weigh concrete panel using small-scale Panel (축소시편을 이용한 Bottom ash 경량콘크리트패널의 차음성능평가)

  • Chung, J.Y.;Im, J.B.;Jeong, G.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.951-955
    • /
    • 2007
  • Recently, drywall's demand is increasing by interest about spread of remodeling house and separated wall structure. This research evaluated panel's SRI and found out panel properties using material of small size. Conclusion of this research is as following. First, we confirmed the effectiveness of small-scale material. Measuring results appeared equally about 400 ${\sim}$ 500 Hz that is fc frequency. Second,, it is no big difference in SRI that use CRC or magnesium board that is used for protection of panel surface. Third, it is compared SRI by used junction to make wall that become disjointing assembly. By the result, sealed wall secures resemblant SRI performance almost with normal wall. Therefore, using joint materials and sealing junction became wall that is detached with high SRI.

  • PDF

Properties of Light-weight Concrete containing Foamed Glass as a part of Fine Aggregate (발포유리소재를 잔골재로 부분 치환한 경량콘크리트의 특성)

  • Lee, Jin-Woo;Park, Hee-Gon;Bae, Yeoun-Ki;Lee, Jae-Sam;Lee, Keun-Haeng;Moon, Sung-Whan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.113-116
    • /
    • 2008
  • In these days, properties of concrete has been demanded to be high performance because concrete structure was bigger and higher. So studies on high strength concrete and lightweight concrete has been frequently done. But lightweight concrete has been used to limited non-structural elements in th country. Lightweight aggregate mixed with lightweight concrete was only coarse aggregate in case of the structural lightweight concrete. In the country studies on the lightweight concrete was poor and unvaried. Also it is difficult to be practical use of lightweight concrete was that it has been expensive. It was study on the using fine lightweight aggregate with lightweight concrete to crushed by-products and wastes to get to make foamed glass with recycled glass. So it was tested by fine aggregate standard and mixed with.

  • PDF

Parameter Analysis for Design of Concrete-Steel Hybrid Extradosed Bridge (콘크리트-강 복합 엑스트라도즈드교의 설계변수 분석)

  • Lho, Byeong Cheol;Lee, Yong Jin;Choi, Kyu Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.100-109
    • /
    • 2011
  • Recently, the concrete-steel hybrid extradosed bridge has been proposed as alternative bridge type at long span site. The hybrid extradosed bridge adopts light orthogonal deck girder instead of heavy concrete deck girder at the center span of bridge, and it enables to construct long-span bridge. And also, for this bridge type the decrease of self-weight of girder enables to reduce girder depth and side span length of extradosed bridge, so its type has more efficient structural behavior and makes it possible to perform optimal bridge design. Therefore, it is very important to set up the procedure and parameters of optimal design for concrete-steel hybrid extradosed bridge. In this study, the effects of design parameters (the variation of pylon height, bridge deck depth and orthogonal deck girder length) are discussed. And numerical analysis and sensitivity analysis are carried out according to these parameters. And design weight values about these parameters are quantitatively suggested to reflect characteristics of concrete-steel hybrid bridge.

Floor Impact Noise Level for Concrete Slab Integrated with Floor Finishing Layers (콘크리트 슬래브와 바닥 상부구조가 일체된 바닥구조의 바닥충격음)

  • Mun, Dae Ho;Oh, Yang Ki;Jeong, Gab Cheol;Park, Hong Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.130-140
    • /
    • 2016
  • Floating floor is most commonly used at apartment houses in Korea for thermal insulation and reducing impact noise. But it in proven that the floating floor is not effective for reducing the floor impact noise in low frequency range. In most cases, impact sound pressure level under 63 Hz frequency band were actually increased by the resonance of resilient material, lightweight concrete and the finishing mortar installed on it. In this paper, an integrated floor system consist of 70 mm light weight concrete and 40 mm finishing mortar successively installed on the concrete slab was suggested to avoid the resonance. Integrated floor system increases total flexural stiffness and mass per unit area. The natural frequencies of first and second vibration mode were increased and acceleration response and floor impact sound level was decreased in all measurement range.

Chracteristics of Cement Mortar Mixed with Incinerated Urban Solid Waste (도시 쓰레기 소각재를 혼입한 시멘트 모르타르의 특성)

  • Chang, Chun-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2010
  • Differently from fly ash, the bottom ash produced from incinerated urban solid waste has been treated as an industrial waste matter, and almost reclaimed a tract form the sea. If this waste material is applicable to foam concrete as an fine aggregate, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and long-span bridge. This research has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was tested by compression strength, flexural strength, absorption ratio, density, expansion factor. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationship between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a optimal mix design proportion of foam light-weight concrete while bottom ash is used as an fine aggregate of the concrete.

Prediction Model of Flexural Properties of LEFC using Foaming Agent (기포제 적용 빛 감성 친화형 콘크리트의 휨 특성 예측 모델)

  • Kim, Byoung-Il;Seo, Seung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • Concrete, which is the most widely used building material in modern times, has been improved not only in strength but also in structural performance such as increase in toughness and ductility, weight reduction, and improvement in quality of human life. Due to the surge in demand for the building, there is a tendency to be used variously from architectural panel and architecture to interior accessories. In Korea, a light-transmitting concrete, LEFC(Light Emotion Friendly Concrete), that insert plastic rods to stimulate emotional sensation through the combination of light and concrete has developed. In previous research, it was confirmed that the use of a synthetic foam agent rather than an animal foam agent did not cause a fogging phenomenon. In this study, lightweight by applying foaming agent to LEFC and two types of fiber (Nylon Fiber, Polyvinyl Alcohol) were compared to achieve to investigate the fiber to be applied in future. An equation that can predict the loss and adhesion reduction of the concrete section according to the diameter of the rod (5mm, 10mm) and the interval (10mm, 15mm, 20mm) was proposed.

Physical Properties of Lightweight and Normal Weight Concretes due to Water-Cement Ratio Changes (물-시멘트비 변화에 따른 경량콘크리트와 일반콘크리트의 물리적 성질)

  • Lee, Chang-Soo;Kim, Jae-Nam;Lim, Youn;Ma, Moon-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.11-20
    • /
    • 2009
  • By using the artificial lightweight aggregate for the natural aggregate depletes and destruction of environment and the application of lightweight concrete in structure, the lightweight concrete is manufactured. The fundamental characteristics by the waterbinder ratio was evaluated. It is suggested the method to control of pre-absorbed water of the lightweight aggregate. Lightweight concrete with pre-absorbed aggregate has similar characteristics compared to normal weight concrete regardless of water-binder ratio. According to the water-binder ratio, the drying condition, and the rebar, the unit mass of the lightweight concrete showed the reduction of 14.6${\sim}$21.0% as the range of 1,668${\sim}$1,998 $kg/m^3$ in comparison to the normal weight concrete. The lightweight aggregate pre-absorbed water showed the deferent evaporation quantity according to the water-binder ratio. As the water-binder ratio is lower, the oven dry vapour water is larger, therefore the internal curing water is increasing. In the same water-binder, comparing the normal concrete the lightweight concrete shows lower compressive strength which is due to the different strength of an aggregate. In the air dry curing, the normal weight concrete has a lower strength improvement effect in w/c 0.3 than the ratio 0.4 and 0.5. However, the strength improvement effect has increasing as the water-binder ratio was low in the light concrete.

The Bond Slip Behavior of High Strength and Ultra Lightweight Concrete According to Compressive Strength and Unit Weight (압축강도 및 단위중량에 따른 고강도 초경량 콘크리트의 부착-슬립 거동)

  • Dong-Bum Jo;Jun-Hwan Oh;Ju-Hyun Cheon;Sung-Won Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.3
    • /
    • pp.254-262
    • /
    • 2024
  • The demand for high strength and ultra-lightweight materials to incorporate the advanced technology of nanomaterials into the lengthening of structures is continuously increasing. Therefore, based on existing research results and numerous mixing trials, we derived a mix of high strength and ultra-light concrete of a compressive strength of 100 MPa with a unit weight of 18 kN/m3 and a compr essive str ength of 80 MPa with a unit weight of 16 kN/m3 and evaluated their per for mance. In this paper, 108 specimens corresponding to high strength and ultra-lightweight concrete with a compressive strength of 100 MPa under a unit weight of 18 kN/m3, and a compressive strength of 80 MPa under a unit weight of 16 kN/m3 were manufactured, and the bond characteristics were identified by performing a directly tensile tests, and the bond characteristics were evaluated by comparing them with the experimental results and the current design criteria. It was judged that the bond strength calculation formula of ACI-408R and the experimental results were not accurately reflected, so an bond stress equation based on ACI-408R was proposed. The result of the proposed equation was that the deviation was somewhat reduced. In addition, the results of calculating the CEB-FIP model and the modified CMR model using statistical analysis showed slight differences from the experimental results, but considering that the bond behavior is a local behavior, the proposed model appears to explain the bond behavior of high strength and ultra-light concrete as a whole.

A Study on the Development of Lightweight Wall for Sound Transmission Loss and Field Test Results of the Dry-Wall System (차음성능이 향상된 경량벽체 개발 및 성능평가 연구)

  • 이병권;배상환;홍천화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.699-704
    • /
    • 2004
  • As being inconvenient to apply reinforced concrete structure to high-rise buildings, it is applied steel structured system. Therefore light-weight wall systems are applied as partition wall to reduce the self-load of the building. But, the required performances of a light-weight wall are not evaluated systematically. As a field survey result, partition walls of house-to-house were not showed their respected performances, so the dwellers are feel so worse the quality of the whole building. In steel-structured high-rise buildings especially, occupant's dissatisfaction concerned indoor noise was high because curtain wall systems having a high air-tight performance isolate the outdoor noise making masking effect. Therefore wall systems which have high performances of sound insulation and air-tightness are required in high-rise buildings. As a result, a new drywall system was presented and the performance was verified with field test.

  • PDF