• Title/Summary/Keyword: light-emitting module

Search Result 83, Processing Time 0.036 seconds

Performance Analysis of Wireless Communication Interface System Module Combined LED Light Device (LED조명 디바이스를 접목한 무선통신 인터페이스 시스템 모듈 성능 분석)

  • Jang, Tae-Soo;Lee, Jun-Myung;Park, Keon-Jun;Kim, Yong-Kab
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2431-2436
    • /
    • 2012
  • This paper is implemented simple visible light communication system by combining the communications through LED lighting. It uses a variable PD sensor to the receiver and 1~12 the LED light-emitting device to the transmitter to realize LED visible light communication. Initial distance value of the developed transmission and receiver is more than 0~1.5m for LED visible light communication, the overall system transmission rate is organized with thousands kbps variability visible light media transmission system. It was measured the performance experiment during lens wearing or not wearing in order to increase the overall efficiency of the LED module, configures the LED and PD to existing PC module for the performance analysis of the implemented research, experiments the maximum communication distance of the transmitter/receiver according to LED count and the transmission rate, check about application methods and the possibility.

A Study on the LED-based Media Transmission Mechanics VLC System Module and Efficiency (LED 조명 기반 미디어 전송기법 가시광통신 시스템 모듈 설계 및 효율 연구)

  • Lee, Jun-myung;Kwon, Jae-hyun;Choi, Jung-won;Park, Keon-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • In this paper, we had design the module of the LED-based media transmission mechanics visible light communication system. To implement the media transmission system through visible light communication transmitter, receiver module the using high brightness, we proposed visible light communication system to implement communication distance of up to a maximum transmitter-receiver distance using a variable PD sensor to the receiver and 1~12 the LED light-emitting device to the transmitter. It was increased efficiency of approximately 20% by measuring the performance during lens wearing or not wearing on the LED module to improve the efficiency of the media transmission system.

A New type $1.0\;mm\;{\times}\;0.5mm$ Light Emitting Diode using AlInGaN cell structure and Its Display Module

  • Park, Book-Sung;Kim, Sung-Woon;Lee, Seon-Gu;Son, Sung-Il;Kim, Eun-Tae;Kim, Chul-Ju
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.557-560
    • /
    • 2008
  • The main goal of this work is to fabricate light emitting diode (LED) module and apply it to mobile handset. We first fabricated the blue-color LED based on the AlInGaN cell structure with size of $200\;{\mu}m\;{\times}\;200\;{\mu}m$. Also we proposed a new $1.0\;mm\;{\times}\;0.5\;mm$ (1005size) packaging procedure for the LED cell. Thus the overall dimension of our LED cell was as small as $1.0\;mm\;{\times}\;0.5\;mm\;{\times}\;0.4\;mm$ ($W\;{\times}\;L\;{\times}\;T$). As far as we knew it was the first time that this small LED cell dimension had been fabricated and operated.

  • PDF

Advances in blue and white Light Emitting Diode using AlInGaN mesa structure and Display Module

  • Park, Book-Sung;Kim, Sung-Woon;Jung, In-Sung;Lee, Seon-Gu;Son, Sung-Il;Lee, Jee-Myun;Kim, Eun-Tae;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.347-348
    • /
    • 2008
  • The main goal of this work is advances in 1.0mm $\times$ 0.5mm light emitting diode using AlInGaN cell structure and display module. In the first place, we proposed $200{\mu}m{\times}200{\mu}m$ cell structure using AlInGaN. Secondly, we describe new type 1.0mm $\times$ 0.5mm blue and white LED fabrication procedure and results of an examination include mobile application.

  • PDF

Development of low cost module for proliferation control of cancer cells using LED and its therapeutic effects (LED를 활용한 저가의 암세포 증식제어 모듈 개발 및 효과)

  • Cho, Kyoungrae;Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1237-1242
    • /
    • 2018
  • Photodynamic therapy has been suggested as an alternative treatment to current cancer therapy which resulting in a variety of side effects because photodynamic therapy targets specific cancer cells and does not have a significant effect on normal cells. Typically, laser was used as a photodynamic therapy, but this was limited due to high cost and heat reaction. However, compact light emitting diodes that can emit light of various wavelengths have been developed at a low cost, which has a great influence on the low cost development of photodynamic therapy equipment. On the other hand, in the study of photodynamic therapy, the data on the direct effect of visible light are relatively small. Therefore, in this paper, we propose a novel cancer therapeutic module by developing a cancer cell proliferation inhibition module based on an Arduino that is relatively inexpensive, and able to use light of various wavelengths.

Efficient excitation and amplification of the surface plasmons

  • Iqbal, Tahir
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1381-1387
    • /
    • 2018
  • One dimensional (1D) grating has been fabricated (using focused ion beam) on 50 nm gold (Au) film deposited on higher refractive index Gallium phosphate (GaP) substrate. The sub-wavelength periodic metal nano structuring enable to couple photon to couple with the surface plasmons (SPs) excited by them. These grating devices provide the efficient control on the SPs which propagate on the interface of noble metal and dielectric whose frequency is dependent on the bulk electron plasma frequency of the metal. For a fixed periodicity (${\Lambda}=700 nm$) and slit width (w = 100 nm) in the grating device, the efficiency of SPP excitation is about 40% compared to the transmission in the near-field. Efficient coupling of SPs with photon in dielectric provide field localisation on sub-wavelength scale which is needed in Heat Assisted Magnetic recording (HAMR) systems. The GaP is also used to emulate Vertical Cavity Surface emitting laser (VCSEL) in order to provide cheaper alternative of light source being used in HAMR technology. In order to understand the underlying physics, far-and near-field results has been compared with the modelling results which are obtained using COMSOL RF module. Apart from this, grating devices of smaller periodicity (${\Lambda}=280nm$) and slit width (w = 22 nm) has been fabricated on GaP substrate which is photoluminescence material to observe amplified spontaneous emission of the SPs at wavelength of 805 nm when the grating device was excited with 532 nm laser light. This observation is unique and can have direct application in light emitting diodes (LEDs).

A Study on the Application of Sunlight System Using an Optical fiber (광섬유를 이용한 자연채광시스템 적용 연구)

  • An, Seungju;Han, Sangju;Hong, Woosik;Choi, Changho;Lee, Jongheok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.51.2-51.2
    • /
    • 2010
  • In recently, interests in the New & Renewable Energy are increasing because of exhaustion of fossil energy and limit of greenhouse gas emission all over the world. Furthermore, improvements in living standards and high-raise Buildings due to the industrial growth require a lot of sunlight in the interior space. Sunlight system gets the natural light into the indoor dark space. There are a lot of type of systems which are reflector type, duct type, optical fibers type and so on. And these systems consist of light-collection module, light-transporting module and light-emitting module. In this research, we installed optical fiber sunlight system in our head office building and tested the system's performance and efficiency. Optical fiber sunlight system is closely connected with hour of sunlight, due to the system have to chase the sun for the solar concentrating, and the system's light-collection and light- transporting efficiency is important factors in the system's performance. As a result of the test, system can be used about 5.66 hours on average in a day, and it has a about 3.21 times collection efficiency and 5.5% transmission loss.

  • PDF

Optical Design of LED module for Street Light Applications

  • Aung, Aye Thida;Yang, Jong-Kyung;Lee, Seung-Min;Lee, Jong-Chan;Park, Dae-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.11
    • /
    • pp.1-8
    • /
    • 2008
  • In this paper, the optical properties of the 54[W] LED module have confirmed by changing the angles of LED modules for street light applications. The angle of LED module changed from the $0[^{\circ}]$ to $60[^{\circ}]$ varying by $20[^{\circ}]$ as horizontal direction ${\ominus}_1$. Morever, the angle of LED module changed from the $0[^{\circ}]$ to $15[^{\circ}]$ varying by $5[^{\circ}]$ as vertical direction ${\ominus}_2$. As a result of simulation, the average illumination was about 17[lux] and the overall illuminance uniformity was 0.29 for a 10.39[m] long and 6[m] wide illuminance area at height of 6[m], which is acceptable for street lighting illumination in the Illuminating Engineering Society(IES) standard.

Wireless Digital Signal Transmission using Visible Light Communication with High-Power LEDs

  • Ng, Xiao-Wei;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.139-140
    • /
    • 2010
  • This paper presents an indoor prototype for wireless digital signal transmission using Visible Light Communications (VLC) in which high power Light Emitting Diode (LED) is used. Using low cost and off-the-shelf components, the transmitter module is constructed using an AVR Atmega128 microcontroller and commercial white beam LEDs. Modulating the light intensity of the LED enables digital signals to be transmitted across the optical link. The receiver module employs a high speed PIN photodetector for optical signal detection and a recovery circuit for optical-electro signal conversion. By sending digitalized data via VLC technology, many applications can be realized in the areas of consumer advertising, traffic safety information and disaster control.

  • PDF

A Study on the Marine Lattern Development using Light Emitting Diodes (해상용 LED(Light Emitting Diode) 등명기 연구개발)

  • Jeong, Hak-Geun;Jung, Bong-Man;Han, Su-Bin;Yu, Seong-Won;Kim, Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.167-170
    • /
    • 2004
  • A high light lantern system using LEDs is composed of power supply, flash controller, and daylight controller and proper case considering work condition. The performance of developed LED lantern is better than that of the existing marine lantern using an incandescent electric lamp and that of foreign products(Vega LED lantern made in New Zealand, Tideland system made in America). The electric consumption of our products is 30% compared with that of existing marine lantern using an incandescent electric lamp, and the luminous Intensity of them is 200% to 400% compared with that of existing marine lantern and foreign LED lantern. In addition, our LED lantern system is easy to repairing something wrong and changing the LED module and other controllers on the sea when they are in accident.

  • PDF