• Title/Summary/Keyword: light wavelength

Search Result 1,436, Processing Time 0.028 seconds

Frontiers in Magneto-optics of Magnetophotonic Crystals

  • Inoue, M.;Fedyanin, A.A.;Baryshev, A.V.;Khanikaev, A.B.;Uchida, H.;Granovsky, A.B.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.195-207
    • /
    • 2006
  • The recently published and new results on design and fabrication of magnetophotonic crystals of different dimensionality are surveyed. Coupling of polarized light to 3D photonic crystals based on synthetic opals was studied in the case of low dielectric contrast. Transmissivity of opals was demonstrated to strongly depend on the propagation direction of light and its polarization. It was shown that in a vicinity of the frequency of a single Bragg resonance in a 3D photonic crystal the incident linearly polarized light excites inside the crystal the TE- and TM-eigen modes which passing through the crystal is influenced by Brags diffraction of electromagnetic field from different (hkl) sets of crystallographic planes. We also measured the faraday effect of opals immersed in a magneto-optically active liquid. It was shown that the behavior of the faraday rotation spectrum of the system of the opal sample and magneto-optically active liquid directly interrelates with transmittance anisotropy of the opal sample. The photonic band structure, transmittance and Faraday rotation of the light in three-dimensional magnetophotonic crystals of simple cubic and face centered cubic lattices formed from magneto-optically active spheres where studied by the layer Korringa-Kohn-Rostoker method. We found that a photonic band structure is most significantly altered by the magneto-optical activity of spheres for the high-symmetry directions where the degeneracies between TE and TM polarized modes for the corresponding non-magnetic photonic crystals exist. The significant enhancement of the Faraday rotation appears for these directions in the proximity of the band edges, because of the slowing down of the light. New approaches for one-dimensional magnetophotonic crystals fabrication optimized for the magneto-optical Faraday effect enhancement are proposed and realized. One-dimensional magnetophotonic crystals utilizing the second and the third photonic band gaps optimized for the Faraday effect enhancement have been successfully fabricated. Additionally, magnetophotonic crystals consist of a stack of ferrimagnetic Bi-substituted yttrium-iron garnet layers alternated with dielectric silicon oxide layers of the same optical thickness. High refractive index difference provides the strong spatial localization of the electromagnetic field with the wavelength corresponding to the long-wavelength edge of the photonic band gap.

An Analysis of Light Induced Degradation with Optical Source Properties in Boron-Doped P-Type Cz-Si Solar Cells (광원의 특성에 따른 Boron-doped p-type Cz-Si 태양전지의 광열화 현상 분석)

  • Kim, Soo Min;Bae, Soohyun;Kim, Young Do;Park, Sungeun;Kang, Yoonmook;Lee, Haeseok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.305-309
    • /
    • 2014
  • When sunlight irradiates a boron-doped p-type solar cell, the formation of BsO2i decreases the power-conversion efficiency in a phenomenon named light-induced degradation (LID). In this study, we used boron-doped p-type Cz-Si solar cells to monitor this degradation process in relation to irradiation wavelength, intensity and duration of the light source, and investigated the reliability of the LID effects, as well. When halogen light irradiated a substrate, the LID rate increased more rapidly than for irradiation with xenon light. For different intensities of halogen light (e.g., 1 SUN and 0.1 SUN), a lower-limit value of LID showed a similar trend in each case; however, the rate reached at the intensity of 0.1 SUN was three times slower than that at 1 SUN. Open-circuit voltage increased with increasing duration of irradiation because the defect-formation rate of LID was slow. Therefore, we suppose that sufficient time is needed to increase LID defects. After a recovery process to restore the initial value, the lower-limit open-circuit voltage exhibited during the re-degradation process showed a trend similar to that in the first degradation process. We suggest that the proportion of the LID in boron-doped p-type Cz-Si solar cells has high correlation with the normalized defect concentrations (NDC) of BsO2i. This can be calculated using the extracted minority-carrier diffusion-length with internal quantum efficiency (IQE) analysis.

Pump Light Power of Wideband Optical Phase Conjugator using HNL-DSF in WDM Systems with MSSI (MSSI 기법을 채택한 WDM 시스템에서 HNL-DSF를 이용한 광대역 광 위상 공액기의 펌프 광 전력)

  • Lee Seong real;Cho Sung eun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3A
    • /
    • pp.168-177
    • /
    • 2005
  • In this paper, we numerically investigated the optimum pump light power resulting best compensation of pulse distortion due to both chromatic dispersion and self phase modulation (SPM) in long-haul 3×40 Gbps wavelength division multiplexing (WDM) systems. We used mid-span spectral inversion (MSSI) method with path-averaged intensity approximation (PAIA) as compensation approach, which have highly nonlinear dispersion shifted fiber (HNL-DSF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that HNL-DSF is an useful nonlinear medium in OPC for wideband WDM transmission, and in order to achieve the excellent compensation the pump light power is selected to equal the conjugated light power into the latter half fiber section with the input light power of WDM channel depending on total transmission length. Also we confirmed that compensation degree of WDM channel with small conversion efficiency is improved by using pump light power increasing power conversion ratio upper than 1.

Photopodegradation efficiency of visible light cured dental resin composites with novel photosensitizers (가시광선 중합형 복합수지용 광증감제의 분해율 비교)

  • Sun, Gum-Ju
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.291-297
    • /
    • 2011
  • Purpose: The purpose of this study was to know the availability of three photosensitizers, CQ, PD, DA, as a photosensitizer of dental resin composite. We want to know abortion band around visible light region for the using potential possibility as a photosensitizer for visible light cured dental composite resin. And I studied to know the relative photodecomposition ratio of three photosensitizers with or without photoinitiator, DAEM. Methods: The photodecomposition of three photosensitizers were studied by UV absorption spectroscopy in ethanol and determined by same instrument with irradiation time for relative photodecomposition. In order to study the effect of amine on photodecomposition was added the DAEM in the photosensitizer solution and the relative rate was measured by the same procedure with aove mentioned. Results: The all of three photosensitizers are absorbed around visible light region. The relative rate of decrease in absorbance incereased in the order: CQ < BD < PD. The effect of DAEM on the photodecomposition of the photosensitizers was appeared different results without DAEM. The photodecomposition rate of PD and DA decreased somewhat with the addition of amine, while that of CQ increased. The rtealtive photodecomposition rate increased in the oprder: BD ${\leq}$ CQ < PD with the addition of amine, but the differnce was not significant. Conclusion: PD and DA like CQ gives to the possibility of use as a photosensitizer for visible light cured dental composite resin by absorption around visible light region and photodecomposition in the maximum absorption wavelength. And it is showed that PD and DA are not effective decomposed with amine initiator, DAEM but CQ decomposed with DAEM effectively. This result may be due to a different mechanism operating for the decomposition of photosensitizers in the presence of amine.

Effects of Eggshell Pigmentation and Egg Size on the Spectral Properties and Characteristics of Eggshell of Meat and Layer Breeder Eggs

  • Shafey, T.M.;Al-mohsen, T.H.;Al-sobayel, A.A.;Al-hassan, M.J.;Ghnnam, M.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.297-302
    • /
    • 2002
  • The effects of eggshell pigmentation and egg size (medium and large) on the spectral properties and characteristics of eggshells were examined in eggs from two genetic groups of breeder flocks. Birds from meat (Hybro, pigmented eggshell, PES) and layer (Leghorn, non-pigmented eggshell, NPES) at 40 and 46 weeks of age, respectively, were used. Measurements of per cent shell (PS), shell thickness (ST), shell volume (SV), shell density (SD), egg shell conductance (EC) and physical dimensions of eggs were made. The spectral properties of eggshells were measured over the wavelength (WL) range of 200 to 1,100 nm. Eggshell absorbed approximately 99.8 percent of the light and transmitted only about 0.12 percent with a maximum light transmission at the near-infra-red region of about 1075 nm. It attenuated shorter WL and transmitted longer WL. Eggshell pigmentation and egg size influenced light transmission into the egg. The NPES had higher EC and transmission of light and lower PS and SD than those of the PES. Large size eggs had higher EC, SD, SV, transmission of light and egg physical dimensions than those of medium size eggs. It is concluded that genetic make up of birds and egg size influenced eggshell characteristics including EC and that, as a consequence, the difference in the spectral properties of eggshells. The pigmentation of eggshell influenced the amount and WL transmitted into the egg. The size and EC of eggs influenced the amount of light transmitted through the eggshell. EC is a good indicator for the ability of eggshell to transmit light.

Development & Reliability Verification of Ultra-high Color Rendering White Artificial Sunlight LED Device using Deep Blue LED Light Source and Phosphor (Deep Blue LED 광원과 형광체를 이용한 초고연색 백색 인공태양광 LED 소자의 개발)

  • Jong-Uk An;Tae-Kyu Kwon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.59-68
    • /
    • 2023
  • Currently, yellow phosphor of Y3Al5O12:Ce3+ (YAG:Ce) fluorescent material is applied to a 450~480nm blue LED light source to implement a white LED device and it has a simple structure, can obtain sufficient luminance, and is economical. However, in this method, in terms of spectrum analysis, it is difficult to mass-produce white LEDs having the same color coordinates due to color separation cause by the wide wavelength gap between blue and yellow band. There is a disadvantage that it is difficult to control optical properties such as color stability and color rendering. In addition, this method does not emit purple light in the range of 380 to 420nm, so it is white without purple color that can not implement the spectrum of the entire visible light spectrum as like sunlight. Because of this, it is difficult to implement a color rendering index(CRI) of 90 or higher, and natural light characteristics such as sunlight can not be expected. For this, need for a method of implementing sunlight with one LED by using a method of combining phosphors with one light source, rather than a method of combining red, blue, and yellow LEDs. Using this method, the characteristics of an artificial sunlight LED device with a spectrum similar to that of sunlight were demonstrated by implementing LED devices of various color temperatures with high color rendering by injecting phosphors into a 405nm deep blue LED light source. In order to find the spectrum closest to sunlight, different combinations of phosphors were repeatedly fabricated and tested. In addition, reliability and mass productivity were verified through temperature and humidity tests and ink penetration tests.

Biological Rhythm Changes of Dominant Tidepool gunnel Pholis nebulosa in Drifting Seaweeds

  • Jin A Kim;Min Ju Kim;Young-Su Park;Jun-Hwan Kim;Cheol Young Choi
    • Journal of Marine Life Science
    • /
    • v.9 no.1
    • /
    • pp.47-52
    • /
    • 2024
  • Light is a major external environmental factor that influences the circadian rhythm of photosynthetic organisms and various physiological phenomena, such as growth, maturation, and behavior. The number of light-reaching organisms changes depending on the season and atmospheric conditions, and the intensity and wavelength of light differ depending on the organisms inhabiting the environment. Altered light changes the circadian rhythm of fish, which is controlled by clock genes, such as period 2 (Per2), cryptochrome 1 (Cry1), and melatonin. In this study, we set the zeitgeber time (ZT; 14 light-10 dark, LD) based on the actual sunrise and sunset times and examined Per2 and Cry1 activities, levels of aralkylamine N-acetyltransferase (AANAT), and melatonin in Pholis nebulosa, a drifting seaweed species exposed to irregular light. Per2 and Cry1 levels increased during the daytime and decreased after sunset. The AANAT levels decreased during the daytime and increased during the night. Melatonin concentration was highest around midnight (ZT21, 23:30), but exhibited similar concentrations during the daytime. While the activity of Per2, Cry1, and AANAT levels exhibited a typical circadian rhythm observed in most vertebrates, melatonin concentrations did not show a significant difference between the daytime and nighttime. These findings provide insights into the circadian rhythm patterns of organisms exposed to irregular light environments, such as P. nebulosa, which differ from those of typical fish species.

Clustering Red Wines Using a Miniature Spectrometer of Filter-Array with a Cypress RGB Light Source

  • Choi, Kyung-Mee
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.179-187
    • /
    • 2010
  • Miniature spectrometers can be applied for various purposes in wide areas. This paper shows how a wellmade spectrometer on-a-chip of a low performance and low-cost filter-array can be used for recognizing types of red wine. Light spectra are processed through a filter-array of a spectrometer after they have passed through the wine in the cuvettes. Without recovering the original target spectrum, pattern recognition methods are introduced to detect the types of wine. A wavelength cross-correlation turns out to be a good distance metric among spectra because it captures their simultaneous movements and it is affine invariant. Consequently, a well-designed spectrometer is reliability in terms of its repeatability.

Optimization of the InGaN/GaN quantum well structure for 470 mm RC-LED with variation of quantum well thickness and Indium composition (양자우물 두께와 인듐조성 변화에 의한 470 mm RC-LED InGaN/GaN 양자우물 구조의 최적화)

  • Im, Jae-Mun;Park, Chang-Yeong;Park, Gwang-Uk;Lee, Yong-Tak
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.509-510
    • /
    • 2009
  • The optical gain of InGaN/GaN multi quantum well (MQW) resonant-cavity light-emitting diode (RC-LED) with different Indium composition and well width in the multi-quantum well was investigated. The optimized optical gain was obtained by simulating active region InGaN/GaN with some test values of well width and Indium composition. By simulation tool, we could simulate on several cases, and then we got exact well width and Indium composition that makes optical gain maximum due to the short wavelength of 470 nm for blue light emission.

  • PDF

Efficient organic light-emitting diodes with Teflon buffer layer

  • Zhang, Deqiang;Gao, Yudi;Wang, Liduo;Qiu, Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.269-271
    • /
    • 2004
  • In this report, high-performance organic light-emitting diodes (OLEDs) with polytetrafluoroethylene (Teflon) buffer layer are demonstrated. Compared with conventional buffer layer, copper phthalocaynine (CuPc), Teflon film shows lower absorption in the wavelength from 200nm to 800nm The OLEDs with Teflon and CuPc buffer layer were fabricated under same conditions, and the device performances were compared. The results indicate that when the thickness of Teflon is 1.5nm, the performance of OLEDs is greatly enhanced with an efficiency of 9.0cd/A at the current density of 100mA/$cm^2$, while the device with an optimized 30-nm-thick CuPc buffer layer only shows an efficiency of6.4cd/A at the same current density.

  • PDF