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Abstract .

Miniature spectrometers can be applied for various purposes in wide areas. This paper shows how a well-
made spectrometer on-a-chip of a low performance and low-cost filter-array can be used for recognizing
types of red wine. Light spectra are processed through a filter-array of a spectrometer after they have
passed through the wine in the cuvettes. Without recovering the original target spectrum, pattern recog-
nition methods are introduced to detect the types of wine. A wavelength cross-correlation turns out to be
& good distance metric among spectra because it captures their simultaneous movements and it is affine
invariant. Consequently, a well-designed spectrometer is reliability in terms of its repeatability.
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1. Introduction

There have been more and more needs for a cheap and well-made miniature spectrometers not only
because of their small, light-weight, and non-fragile properties, but also because of their variety of
applications. Recent works (Morawski, 2006; Chang and Lee, 2008} have reviewed the applications
of spectrometers which provide solutions to a variety of promising applications in biological, chemi-
cal, medical, or pharmaceutical industries, and also showed that the filter-based spectrometers have
high resolution. There has also been an effort to recover the original target spectrum based on
a linear model which has to confront an inversion of the huge matrix whose columns are highly
correlated (Chang and Lee, 2008).

Because the miniature spectrometers are often cheap, filters are not exactly a delta function for a
given narrow range response. Thus the response spectrum out of the miniature spectrometer of low-
cost filter-array is distorted and augmented by the responses from other adjacent. filters. However
their mmltiple filters and detectors help avoid moving elements and capture the target spectrum in
a very short time (Chang and Lee, 2008). So, their random variation is manageably small, which
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guarantees the repeatability of measurement. In other words, if a material is measured repeatably
under the same condition, the miniature spectrometer provides very similar distorted curves. In
this paper, digital signal processing(DSP) (Duda et al., 2001; Peebles, 2000) techniques are applied
to the distorted output spectra from the miniature spectrometer to show that it is reliable in terms
of its repeatability. That is, this tiny chip can be used to recognize types of red wine even with
those distorted curves without recovering the original target spectrum.

Four types of wine are prepared in the clear cuvettes, and a miniature spectrometer of low-cost
filter-array measures output light spectra which have passed through the wine. As an unsupervised
learning method, agglomerative hierarchical clustering(AHC) is used to discover the underlying
relationship among output spectra. Here, as an analog of time cross-correlation, wavelength cross-
correlation is defined to evaluate the simultaneous movement of the output spectra. A criterion
pseudo-F' (Hastie et al., 2001; Rencher, 2002) is used to estimate the proper number of underlying
clusters. Once the clusters are determined, an intuitive and simple way of classification method is
introduced based on the cross-correlation. For the analysis, we do not consider any dimension re-
duction or feature extraction methods {(Hasite et al., 2001; Johnson and Wichern, 2007; Krzanowski,
2000; Rencher, 2002) such as principal component. analysis(PCA), independent component anal-
ysis(ICA), reduced rank regression(RRR), or canonical correlation analysis(CCA) because these
methods would corrupt the cross-correlation. The results are going to be interpreted in terms of
repeatablhty of the spectrometers

The suggested methods in this paper can be applied to analyze not only the data from the mmlature
spectrometer but also the ones from typical spectrometers. That is, the scope of the. methodology
can be extended from the wine detection to all liquid material detection, and further to clustering
materials in a variety of application fields like biological, chemical, medical, or pharmaceutical
industries.

Section 2 explains how the spectrometer has collected the output spectra passed through cuvettes
which contain 4 different types of wine. Section 3 provides the wavelength cross-correlation as a
distance metric and the image of correlation matrix. Section 4 discusses AHC as an unsupervised
learning to find proper underlying groups of the data based on the correlation. In Section 5, a
simple classification method is suggested and practiced to the wine data. Finally, section 6 draws
the summary and conclusmn

2. Experiments '

Twelve cuvettes are prepared to contain four different types of red wine, and each three cuvettes
contain the same type of wine. There are two replications, so that there are in total twenty four
output spectra. A cheap fine miniature spectrometer on-a-chip based on the 120 nano—optical filter-
array measures output spectra sesitivity which have passed through the cuvettes of wine. This
spectrometer converts the input optical signal into the eutput electrical signal in a few nanometer
scale size without any moving parts. A surface plasmon technology based on metallic nanowires
allows the integration. for' manufacturing nano-optical filters onto a regular CCD/CMOS imager
production. Depending on the type of light source the emission power and the spectra can also vary
significantly across devices and operating conditions. In this experiment, a cypress RGB light was
used and its camera shutter speed was 15.5m/sec. ’

Figure 2.1 illustrates 6 output spectra for each 4 kinds wine data, aiong with the 120 wavelengths
corresponding to an array of filters.- It is generally hard to tell by a sight whether the spectral
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Figure 2.1. Plots of 6 output spectra from a spectrometer of 120 filter-array for 4 kinds of red wine.

signals from the spectrometer are the same kind or not. The four types of wine spectra are not also
easily classifiable by a sight. So in order to pursue a systematic process of discriminating the four
wine types, the statistical clustering methods are adopted.

Since the filters are not a delta function for a given narrow range of wavelength, the response
spectrum out of the miniature spectrometer is distorted by each filter’s spectral characteristics.
However if the repeatability of measurement is guaranteed, digital signal processing(DSP) tech-
niques can help control the random variation among the data and the spectrometer can cluster
and classify the material types. Reversely, if the types of materials are well detected by DSP, the
spectrometer can be thought to provide a reliable measurement based on their fine transmittance
or reflection properties.

3. The Correlation Coefficient as a Metric

Euclidean distance has been often used to measure the distance between vectors in clustering analy-
sis {(Duda et al., 2001; Hasite et al., 2001; Johnson and Wichern, 2007; Krzanowski, 2000; Rencher,
2002). However typical distance metrics, like Euclidean distance, change when either one of the
vectors is shifted in its location or scaled by a number. Contrarily, the correlation coefficient is
known to be affine invariant, which means this statistic remains the same under both location and
scale transformations of the data. The correlation coefficient has been applied to catch the exact
simultanecus movement of two signals, or to study the stationarity of the signals over time in DSP.
In this paper, we use the correlation coefficient (Box et al., 1994; Peebles, 2000) as a metric to
group spectra based on their synchronizing property.

For p sequential wavelength X; and observations (@x,,yn1}, (Txs,¥ny)s- .-, &y, Yn,) Of & pair of
spectra (X,Y), the wavelength cross correlation can be defined by
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Figure 3.1. Image of the correlation matrix when the data are arranged periodically in the order of 4 wine types.

The correlation coefficient can range from —1 to 1. If it is +1{~1), there is a perfect positive
(negative) synchronization between two spectra. That is, for positive r, if X increases, so does
Y. For negative r, if X increases, Y decreases. If it is 0, there is no synchronization between two
spectra. Adopting this statistic to a spectrometer of filter-array, we can consider p as a necessary
number of filters on it. In DSP, the time shift is used to express the the current process as a finite,
linear aggregate of previous values of the process (Peebles, 2000). Here, not like in DSP, we do
not consider the wavelength shift because the data has been collected under the well controlled
environment, and we do consider the standardized form because of its affine invariant property.

For any real numbers a, b, ¢ and d, we can easily prove its affine invariant property since
r(@X +b,cY +d; ) = r{X,Y; \). (3.2

In the real situations, the cuvettes will be replaced by other containers which could vary in their
shape, thickness, or color. The spectra would change in both their location and scale. Still, the
correlation coefficient could stay the same. '

In order to lock for any pattern in the correlation matrix, we arranged the data in a periodic
order such as type 1, type 2, type 3, type 4, type 1, type 2, .... Figure 3.1 shows the image of
24 x 24 correlation matrix of the wine spectrum data in grey scale. Here white color represents 1,
black color represents 0, and grey color represents the correlation coefficient between 0 and 1. The
diagonal elements are all white because their self-correlation coefficients must be 1. In this data,
the correlation coefficients are found to range from at least .9 to 1, There is a certain pattern in
the image, and it repeats every four elements, which is actually the number of wine types used in
the experiment. Therefore, it suggests that there be a certain number of groups in the data.

4. Clustering Spectra Using the Cross-Correlation and the Pseudo-F

As an unsupervised learning method (Duda et al., 2001; Hasite et al., 2001; Johnson and Wichern,
2007; Krzanowski, 2000; Rencher, 2002}, clustering can recognize the pattern by grouping the
spectra which are close in terms of their synchronization. Among many possibilities, we use AHC
because it is intuitive and easy to look at the latent structural relationship of all the spectra. One
of the big advantages of AHC is that there is no need to assume the number of clusters which is



Ciustering Red Wines with a Miniature Spectrometer 183

usually unknown in the first place.

To cluster the n wine spectra, a series of merging takes place from n clusters to a single cluster.
At each stage of the hierarchical clustering the two closest or most similar clusters are linked
together. The different ways of defining similarity or dissimilarity between clusters would develop
different clusters. We have used the wavelength cross-correlation as a distance metric to catch the
simultaneous movement of two spectra. Often, different linkages can also lead to different clusters,
their performances turns out to be the same in the wine data since clusters are compact and well
separated.

Among various criterion functions to evaluate the performances of the clustering methods (Choi and
Jun, 2007; Milligan and Cooper, 1985), we use the pseudo-F which is intuitive to understand and
has often big gaps or local maxima. Let us first define the within-variance and the between-variance
among clusters. Suppose that for a spectrum s; € RP, ¢ = 1,...,n, let the data be a set of D =
{51, $2,...,8n} and cluster them into ¢ disjoint clusters, D1, Ds, ..., D.. Let n; be the size of D;.
Let m; = 3 1. 8/n: be the mean of the cluster D;, and m = 3, s/n be the grand mean. Let
the variance V; of the cluster D; be

Vi = Z (s = mi)(s — ms)T. 4.1

s€D;

Let the total variance Vr be the sum of Vi and Vg, where

Vw = za:Vi and Vp= Zc:m(mZ —m)(m; —m)T. (4.2)

=1 =1

Then tr(Viy ) is called the within-variance, and tr(Vz) is called the between-variance. Since the total
variance is fixed for a given data set, the within-variance and the between-variance are complemen-
tary. Often, the within-variance is called the sum of squared error(SSE) and used as a popular
criterion to estimate the number of optimum clusters (Duda et al., 2001; Choi and Jun, 2007).
However, SSE considers only the within-variance and often decreases monotonically without a big
gap or local minima, which leads to a hard decision.

Avoiding any parametric assumptions while keeping the fine property of two variances, we use the
pseudo-F, an analog of the univariate analysis of variance, defined as follows (Rencher, 2002):

_ tx(Ve)/(e—1)
(Vv )/ in—c)’

Note that it is a ratio of the between-variance to the within-variance, each divided by its correspond-
ing degrees of freedom. When the between-variance becomes big, the clusters are well separated, and
the within-variance becomes small, the clusters are compact. So the pseudo-F becomes bigger when
the clusters are more compact and better separated. It approximately follows an F-distribution
and often has local maxima, which is its very unique property. We estimate the number of clusters
at its first local maximum.

pseudo-F' (4.3)

Figure 4.1 illustrates the dendrogram of the hierarchical clustering with the wine data. If the tree
are cut at a certain height, the data are separated into a number of clusters. From the structure, we
can see that 2, 3 or 4 are most likely number of clusters. tr(Vg), tr{Viv) or SSE, and pseudo-F have
been evaluated from the wine data. Luckily, both SSE and pseudo-F' have local extremes, which
is not the usual case. However as explained earlier we suggest to look at the pseudo-F because
it considers both the between-variance and the within-variance, and mostly it has local maxima.
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Figure 4.1. Dendrogram of 24 output spectra.
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Figure 4.2. Pseudo-F for a number of cluster.

Figure 4.2 illusirates a plot of the pseudo-F for a serial number of clusters. Clearly, there is a
maximum at 4, which is the very number of wine types used in the experiment. Above all, the four
clusters match the four original types of wine. This empirical study announces that the well-made
miniature spectrometer of filter-array provides reliable measurement of liquid materials.

5. Classification Based on the Cross-Correlation with the Mean

Once the materials have been clustered into a certain number of clusters, we are interested in whether
the spectrometer can classify a new sample into one of the current clusters. For this supervised
learning (Duda et al., 2001}, we consider a combination of two intuitive classification methods: the
Nearest-Neighbor Rule(NNR) and Fisher Linear Discriminant Analysis(FLDA). While the NNR
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Table 5.1. Between-variance tr{Vg), within-variance tr(Viy )} which is SSE and pseudo-F for-a given number of clusters obtained
from AHC

Number of

clusters tr(Vg) tr(Viy) Pseudo-F
2 62732.24 * 10858.92255 127.0945
3 71923.79 1667.37509 452.9274
4 73528.07 63.09726 - 7768.7538
5 2015014.02 ‘ 2084.46971 4591.7274
6 3784644.15 22419.92843 607.7057
7 3784649.26 22414.82421 478.3965
8 3784650.35 ' 22413.73008 385.9522
9 5654073.17 53318.65901 198.8307
10 7587089.59 55641.71255 212.4915

assigns a test point to a group associated with the nearest point to it, FLDA assigns a test point to
a group whose standardized mean is closer to it. Since a spectrometer is small, a simple algorithm
is preferred. The NNR requires n comparison, and FLDA requires inversion of p x p covariance
matrix where p is as big as the number of filters. In this work, we suggest that a new sample be
assigned to a cluster whose mean has the highest cross-correlation.

Using the leave-one-out method, the 24 wine data are classified to one of the four wine types where it
has the highest correlation with the mean of each type. Table 5.1 shows the correlation coefficients
between observations and means of 4 clusters have been evaluated, and 100% of the data have
been assigned to its own type. This good result implies that the cross-correlation is a fine metric
to measure the relationship among spectra. Also, the spectrometer of low-cost and filter-array
produces very reliable measurement even though its filter is not exactly a delta function.

6. Conclusion

A fine miniature spectrometer of low-cost and filter-array can detect liquid materials even though
filters are not an exact delta function in a narrow range of response spectra. The distorted re-
sponse spectra can be controlled by DSP because the output spectra have the manageable random
variation even though spectra are distorted and augmented by the responses from other adjacent
filters. Without recovering the original target spectrum, both unsupervised and supervised learn-
ing methods based on the wavelength cross-correlation have showed high performance in detecting
the material types of the experimental data. This in turn implies that the spectrometer provides
very similar distorted curves and so its measurement is reliable in terms of its repeatability. In
order to use the cross-correlation as a metric for both unsupervised and supervised learning meth-
ods any dimension reduction or feature extraction methods have not been used only because the
cross-correlation would be lost. If there is a necessity to reduce the dimension of the data, it is
recommended to choose a series of consecutive filters instead of using PCA, ICA, RRR, or CCC as
long as the correlation is considered as a metric to measure the distances between spectra.

The actual situation can make the conditions change, so that the DSP methods should be altered too.
First, if liquid materials are poured into various containers of different materials, thickness or colors,
the spectra could shift or delay across wavelengths. For those cases, the wavelet shift as an analogy
of time shift should be introduced to the correlation. Secondly, the correlation coefficients used in
this paper is often used for parametric studies when the distribution of data is assumed. If there
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Table 5.2. Cross-correlation coefficients between an observation and the means of clusters. Each observation is ass:gned to a
cluster whose mean has the highest correlation with it.

Obs Original Cluster 1 Cluster 2 Cluster 3 Cluster 4 Assigned
Cluster Cluster
1 1 0.9998216 0.9151263 0.9980889 0.9989154 1
2 2 0.9068464 0.9994405 0.8901063 0.9206034 2
3 3 0.9979018 0.8975372 0.9999163 0.9943889 3
4 4 0.9989331 0.9287489 0.9949036 0.9999427 4
5 1 0.9999558 0.9154419 .9982293 0.8988450 1
6 2 0.9165701 0.9999625 0.9003364 0.9298916 2
7 3 0.9983196 0.8993117 0.9999911 0.9850370 3
8 4 0.9989958 0.9278646 0.9950127 0.9999896 4
9 1 0.9999517 0.9140040 0.9983476 0.9988785 1
10 2 0.9148905 0.9999871 0.8985333 0.9282904 2
11 3 0.9980765 0.8979680 0.9999877 0.9946364 3
12 4 0.9989830 0.9285916 0.9949886 0.9999926 4
13 1 0.9999520 0.9158218 0.9981637 0.9988977 1
14 2 0.9192420 0.9998583 0.9031421 0.9324349 2
15 3 0.9984355 0.8998715 0.9999838 0.9952306 3
16 4 0.9989372 0.9281958 0.9948908 . 0.9999888 4
17 1 0.9999444 0.9146531 0.9982193 0.9989663 1
18 2 0.9142444 0.9999614 0.8978503 0.9276916 2
19 3 0.9981283 0.8980259 0.9999849 0.9947162 3
20 4 0.9989093 0.9291263 0.9948338 0.9999901 4
21 1 0.9999511 0.9156939 0.9981371 0.9989158 1
22 2 0.9181948 0.9999058 0.9020335 0.9314520 2
23 3 0.9985161 0.9002765 0.9999693 0.9953614 3
24 4 0.9988707 0.9287655 0.9947574 0.9999851 4

are at least one outlier exists in the data, the coeflicient breaks down. So, if it is necessary to avoid
the parametric assumptions or break-down situation, the nonparametric correlation coefficients can
be substituted as new metrics. Thirdly, if the correlation coefficients do not work satisfactorily as
a metric, distances like Euclidean can be used along with typical dimension reduction methods.
Alternatively, since the output spectra look like a function or density, the nonparametric methods
to test the distribution can be used as a new metric, and this can provides a nice asymptotic
distribution theory.
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