• Title/Summary/Keyword: light wavelength

Search Result 1,428, Processing Time 0.028 seconds

Calculation of Pump Light Power in Wideband Optical Phase Conjugator with Highly-Nonlinear Dispersion Shifted fiber (HNL-DSF를 이용한 광대역 광 위상 공액기의 펌프 광 전력 계산)

  • 이성렬;이하철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5A
    • /
    • pp.473-483
    • /
    • 2004
  • In this paper, we numerically investigated the optimum pump light power best compensating for pulse distortion due to both chromatic dispersion and self phase modulation (SPM) as a function of channel input power in 8 channel ${\times}$ 40 Gbps wavelength division multiplexing (WDM systems. Also we investigated the allowable maximum channel input power dependence on modulation format and fiber dispersion coefficient in the various pump light power of OPC. The considered WDM transmission system is based on path-averaged intensity approximation (PAIA) mid-span spectral inversion (MSSI) compensation method, which has highly-nonlinear dispersion shifted fiber (HNL-SDF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that optimal pump light power of HNL-DSF OPC depend on modulation format, initial channel input power, total transmission length and fiber dispersion. But optimal pump light power of HNL-DSF OPC must be selected to make power conversion ratio to almost unity. And we confirmed that, if we allow a 1 dB eye opening penalty (EOP), the tolerable maximum channel input power is increased by using RZ than NRZ as modulation format when pump light power of HNL-DSF OPC is not optimal value but another values.

Fabrication of Visible Light Transmittance-variable Smart Windows Using Phase Retardation Films (위상지연 필름을 이용한 가시광 투과율 가변형 스마트윈도우 제작)

  • Kim, Il-Gu;Yang, Ho-Chang;Park, Young-Min;Hong, Young Kyu;Lee, Seung Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.29-34
    • /
    • 2022
  • A fabrication process of smart windows with controllable visible light transmittance by using retardation films is proposed. The 𝛌/4-phase retardation films that can convert a linearly polarized light into circularly polarized light are achieved through photo-alignment layers and reactive mesogen (RM) coating process. Two sheets of the fabricated retardation films with different orientation angles induced to light transmission mode (45°/-45°) and light blocking mode (45°/45°) for visible wavelength. We evaluated retardation characteristics according to the thickness of the birefringent RM material and found out the optimal condition for the film with 𝚫n·d of 𝛌/4-phase. The proposed structure of the smart window exhibited the light blocking ratio improved by more than 20% in the visible wavelength (380 nm to 780 nm). Finally, it was confirmed that the feasibility of the window structure by applying to a prototype for a smart window with a size of 150 × 150 mm2.

Quantifying of Photon Flux Emitting from Light-emitting Diodes Using a Quantum Sensor and Spectroradiometer (광량자센서와 분광광도계를 이용한 발광다이오우드 광량자속의 정량화)

  • 김용현;박현수
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.223-229
    • /
    • 2000
  • This study was conducted to analyze the opto-electric characteristics of light-emitting diodes(LED) designed for growth and morphogenesis control of transplant and to quantify the photon flux emittig from LED using a quantum sensor spectroradiometer. Difference in photon flux for blue and red LED between measured by a quantum sensor and measured by a spectroradiometer and numerically integrated was not observed. This result implies a spectroradiometer can be applied to quantify the photon flux emitting from far-red LED, which can not be measured using a quantum sensor. Since photon flux increases in proportion to wavelength, photon flux of LED modules arranged for red and far-red increased in proportion to wavelength, photon flux of LED modules arranged for red and rar-red increased gradually as the number of LED stick emitting far-red in LEd modules increased. Illumination of LED modules arranged for red and far-red decreased as the number of LED stick emitting far-red in LED modules increased. There was no difference in irradiance between LED modules arranged for red and far-red.

  • PDF

Analysis of the Characteristics of a White OLED using the Newly Synthesized Blue Emitting Material nitro-DPVT by Varying the Doping Concentrations of Fluorescent Dye and the Thickness of the NPB Layer (신규 합성한 청색발광재료 nitro-DPVT를 사용한 백색 유기발광다이오드의 형광색소 도핑농도 및 NPB 층의 두께 변화에 따른 특성 분석)

  • Jeon, Hyeon-Sung;Cho, Jae-Young;Oh, Hwan-Sool;Yoon, Seok-Beom
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.379-385
    • /
    • 2006
  • A stacked white organic light-emitting diode (OLED) having a blue/orange emitting layer was fabricated by synthesizing nitro-DPVT, a new derivative of the blue-emitting material DPVBi on the market. The white-emission of the two-wavelength type was successfully obtained by using both nitro-DPVT for blue~emitting material, orange emission as a host material and Rubrene for orange emission as a guest material. The basic structure of the fabricated white OLED is glass/ITO/NPB$(200{\AA})$/nitro-DPVT$(100{\AA})$/nitro-DPVT:$Rubrene(100{\AA})/BCP(70{\AA})/Alq_3(150{\AA})/Al(600{\AA})$. To evaluate the. characteristics of the devices, firstly, we varied the doping concentrations of fluorescent dye Rubrene from 0.5 % to 0.8 % to 1.3 % to 1.5 % to 3.0 % by weight. A nearly pure white-emission was obtained in CIE coordinates of (0.3259, 0.3395) when the doping concentration of Rubrene was 1.3 % at an applied voltage of 18 V. Secondly, we varied the thickness of the NPB layer from $150{\AA}\;to\;200{\AA}\;to\;250{\AA}\;to\;300{\AA}$ by fixing doping with of Rubrene at 1.3 %. A nearly pure white-emission was also obtained in CIE coordinates of (0.3304, 0.3473) when the NPB layer was $250-{\AA}$ thick at an applied voltage of 16 V. The two devices started to operate at 4 V and to emit light at 4.5 V. The external quantum efficiency was above 0.4 % when almost all of the current was injected.

Organic-layer and semitransparent electrode thickness dependent optical properties of top-emission organic light-emitting diodes (전면 유기 발광 소자의 유기물층과 반투명 전극의 두께 변화에 따른 광학적 특성)

  • An, Hui-Chul;Joo, Hyun-Woo;Na, Su-Hwan;Han, Wone-Keun;Kim, Tae-Wan;Lee, Won-Jea;Chung, Dong-Hoe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.57-58
    • /
    • 2008
  • We have studied an organic layer and semitransparent Al electrode thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top-emission device structure is Al(100nm)/TPD(xnm)/Alq(ynm)/LiF(0.5nm)/Al(25nm). While a thickness of total organic layer was varied from 85nm to 165n, a ratio of those two layers was kept to be about 2:3. Semitransparent Al cathode was varied from 20nm to 30nm for the device with an organic layer total thickness of 140nm. As the thickness of total organic layer increases, the emission spectra show a shift of peak wavelength from 490nm to 580nm, and the full width at half maxima from 90nm to 35nm. The emission spectra show a blue shift as the view angle increases. Emission spectra depending on a transmittance of semitransparent cathode show a shift of peak wavelength from 515nm to 593nm. At this time, the full width at half maximum was about to be a constant of 50nm. With this kind of microcavity effect, we were able to control the emission spectra from the top-emission organic light-emitting diodes.

  • PDF

Research about Hyperspectral Imaging System for Pre-Clinical testing of Small Animal (소형동물 전임상실험을 위한 하이퍼스펙트럼 영상장비 연구)

  • Lee, kyeong-Hee;Choi, Young-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2208-2213
    • /
    • 2007
  • In this study we have developed a hyperspectrum imaging system for highly sensitive and effective imaging analysis. An optical setup was designed using acoustic optical tunable filter (AOTF) for high sensitive hyperspectrum imaging. Light emitted by mercury lamp gets split in to diffracted and undiffracted beams while passing though AOTF. GFP transfected HEK-293 cell line was used as a model for in vitro imaging analysis. Cells were first, analyzed by fluorescence microscope followed by flow cytometric analysis. Flow cytometric analysis showed 66.31% transfection yield in GFP transfected HEK-293 cells. Various images of GFP transfected HEK-293 cell were grabbed by collecting the diffracted light using a CCD over a dynamic range of frequency of 129-171 MHz with an interval of 3 MHz. Subsequently, for in vivo image analysis of GFP transfected cells in mouse, a whole-body-imaging system was constructed. The blue light of 488 nm wavelength was obtained from a Xenon arc lamp using an appropriate filter and transmitted through an optical cable to a ring illuminator. To check the efficacy of the newly developed whole-body-imaging system, a comparative imaging analysis was performed on a normal mouse in presence and absence of Xenon arc irradiation. The developed hyperspectrum imaging analysis with AOTF showed the highest intensity of green fluorescent protein at 153 MHz of frequency and 494 nm of wavelength. However, the fluorescence intensity remained same as that of the background below 138 MHz (475 nm) and above 162 MHz (532 nm). The mouse images captured using the constructed whole-body-imaging system appeared monochromatic in absence of Xenon arc irradiation and blue when irradiated with Xenon arc lamp. Nevertheless, in either case mouse images appeared clearly.

Layer Thickness-dependent Electrical and Optical Properties of Bottom- and Top-emission Organic Light-emitting Diodes

  • An, Hui-Chul;Na, Su-Hwan;Joo, Hyun-Woo;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.28-30
    • /
    • 2009
  • We have studied organic layer-thickness dependent electrical and optical properties of bottom- and top-emission devices. Bottom-emission device was made in a structure of ITO(170 nm)/TPD(x nm)/$Alq_3$(y nm)/LiF(0.5 nm)/Al(100 nm), and a top-emission device in a structure of glass/Al(100 nm)/TPD(x nm)/$Alq_3$(y nm)/LiF(0.5 nm)/Al(25 nm). A hole-transport layer of TPD (N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine) was thermally deposited in a range of 35 nm and 65 nm, and an emissive layer of $Alq_3$ (tris-(8-hydroxyquinoline) aluminum) was successively deposited in a range of 50 nm and 100 nm. Thickness ratio between the hole-transport layer and the emissive layer was maintained to be 2:3, and a whole layer thickness was made to be in a range of 85 and 165 nm. From the current density-luminance-voltage characteristics of the bottom-emission devices, a proper thickness of the organic layer (55 nm thick TPD and 85 nm thick $Alq_3$ layer) was able to be determined. From the view-angle dependent emission spectrum of the bottom-emission device, the peak wavelength of the spectrum does not shift as the view angle increases. However, for the top-emission device, there is a blue shift in peak wavelength as the view angle increases when the total layer thickness is thicker than 140 nm. This blue shift is thought to be due to a microcavity effect in organic light-emitting diodes.

Studies on the Development of Photoreceptor in the Nonchromatophore Organisms (II) - Effects of organic compound and metal ion influx of Light-Induced Mitochondrial ATPase in the Lentinus edodes(Berk.) Sing - (무흡광색소 식물의 감광수용체 개발 연구(II) - 표고버섯의 광감응성 mitochondrial ATPase의 유기물 및 금속이온 유입 효과 -)

  • Min, Tae-Jin;Cho, Suck-Woo;Kim, Young-Soon;Kim, Jae-Woong;Mheen, Tae-Ick
    • The Korean Journal of Mycology
    • /
    • v.15 no.4
    • /
    • pp.224-230
    • /
    • 1987
  • Effects Of organic compound, photosensitizer and $K^+$ ion influx. On the light-induced ATPase of mitochondria in L. edodes purified by linear sucrose density gradient centrifugation were studied. The mitochondrial ATPase activity was investigated by various wavelength illumination at dark state. The mitochondrial ATPase was activated 139% and 128% by 10m mol dithiothreitol and 0.1m mol quinacrine, respectively. This enzyme also was activated 36% by 0.1m mol phenazine methosulfate as photosensitizer. But, 100 mg oligomycin and 1m mol phlorizin inhibited activity of enzyme to 48% and 45%, respectively. Its optimum wavelength was 690 nm on the effect of $K^+$ ion influx, its optimum pH and temperature were found to be 7.2 and $55^{\circ}C$.

  • PDF

Thermal Characteristics of the design on Residential 13.5W COB LED Down Light Heat Sink (주거용 13.5W COB LED 다운라이트 방열판 설계에 따른 열적 특성 분석)

  • Kwon, Jae-hyun;Lee, Jun-myung;Kim, Hyo-jun;Kang, Eun-young;Park, Keon-jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.20-25
    • /
    • 2014
  • There are several severe problems for LED device, the next generation's economy green lighting: as the temperature increases, the lamp efficiency decreases; if the temperature is over $80^{\circ}C$, the lifetime of lighting decreases; Red Shift phenomenon that wavelength of spectrum line moves toward long wavelength occurs; and optical power decreases as $T_j$ increases. Thus, Heat sink design that can minimize the heat of LED device is currently in progress. While the thermal resistance of COB Type LED was reduced by direct coupling of LED chip to the board, residential 13.5W requires Heat sink in order resolve heat issue. This study designed Heat Sink suitable for residential 13.5W COB LED down-light and selected the optimum Fin thickness through flow simulation that packaged the designed Heat Sink and 13.5W COB. And finally it analyzed and evaluated the thermal modes using contacting thermometer.

Parametric Studies of Pulsed Laser Deposition of Indium Tin Oxide and Ultra-thin Diamond-like Carbon for Organic Light-emitting Devices

  • Tou, Teck-Yong;Yong, Thian-Khok;Yap, Seong-Shan;Yang, Ren-Bin;Siew, Wee-Ong;Yow, Ho-Kwang
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Device quality indium tin oxide (ITO) films are deposited on glass substrates and ultra-thin diamond-like carbon films are deposited as a buffer layer on ITO by a pulsed Nd:YAG laser at 355 nm and 532 nm wavelength. ITO films deposited at room temperature are largely amorphous although their optical transmittances in the visible range are > 90%. The resistivity of their amorphous ITO films is too high to enable an efficient organic light-emitting device (OLED), in contrast to that deposited by a KrF laser. Substrate heating at $200^{\circ}C$ with laser wavelength of 355 nm, the ITO film resistivity decreases by almost an order of magnitude to $2{\times}10^{-4}\;{\Omega}\;cm$ while its optical transmittance is maintained at > 90%. The thermally induced crystallization of ITO has a preferred <111> directional orientation texture which largely accounts for the lowering of film resistivity. The background gas and deposition distance, that between the ITO target and the glass substrate, influence the thin-film microstructures. The optical and electrical properties are compared to published results using other nanosecond lasers and other fluence, as well as the use of ultra fast lasers. Molecularly doped, single-layer OLEDs of ITO/(PVK+TPD+$Alq_3$)/Al which are fabricated using pulsed-laser deposited ITO samples are compared to those fabricated using the commercial ITO. Effects such as surface texture and roughness of ITO and the insertion of DLC as a buffer layer into ITO/DLC/(PVK+TPD+$Alq_3$)/Al devices are investigated. The effects of DLC-on-ITO on OLED improvement such as better turn-on voltage and brightness are explained by a possible reduction of energy barrier to the hole injection from ITO into the light-emitting layer.