• Title/Summary/Keyword: light heat insulation sheet

Search Result 6, Processing Time 0.019 seconds

Performance of Heat Insulation Capability of the Concrete Applying Light Heat Generating Sheet (광발열 단열시트를 적용한콘크리트의 특성 )

  • Lee, Hyeon-Jik;Baek, Sung-Jin;Lee, Seung-Min;Lim, Gun-Su;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.169-170
    • /
    • 2023
  • In this study, light-heat generating materials were produced in two ways, and the performance of two light-generating insulation sheets was reviewed. As a result of the experiment, it was possible to confirm the improved heating performance of the light heating insulation sheet compared to the existing bubble sheet. The light heat insulation sheet (b) showed improved thermal properties compared to the existing bubble sheet, and it is believed that the temperature has increased due to the combined effect of initial hydration heat and heat generation after installation. In future studies additional experiments are needed to compensate for the insufficient insulation performance due to the single bubble sheet through the double bubble sheet and to adjust the amount of light-generating materials added as a consideration of the optimal heat-generating effect of the light-generating insulation sheet (b).

  • PDF

Effect of The Heat Curing Sheet Combined with Duble Layered Bubble Sheets and Light Heat Generating Materials on Surface Temperature History of the Concrete (광발열시트 및 2중 버블시트를 조합한 보온양생시트를 적용한 콘크리트의 양생 효과)

  • Han, Cheon-Goo;Han, Min-Cheol;Jung, Woung-Seon;Nam, Sang-Heon;Kim, Su-Hoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.39-40
    • /
    • 2022
  • This study is intended to examine the curing effect of the combination of the bubble sheet on the concrete by analyzing the temperature profile and core strength of the simulated concrete structure. The test results relvealed that the average temperature of the concrete applying photothermal sheet overlapped with the double bubble sheet at the bottom was 23.5℃, which had the highest insulation and insulation effect compared to other types of surface insulation curing sheets, and the core strength increased by up to 56%.

  • PDF

Effect of Curing Sheet Conbined with Bubble Sheet and Heat generating Materias under Light Source on Surface Temperature of Cement Mortar (광발열소재와 버블시트를 조합한 양생시트가 모르타르의 표면온도 이력에 미치는 영향)

  • Kim, Su-Hoo;Hu, Win-Yao;Beak, Sung-Jin;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.160-161
    • /
    • 2022
  • This study is to investigate the temperature history over time of the cement mortar to confirm the bubble sheet insulation effect using the heat generat sheet. As a result of the experiment, it was confirmed that the heating effect was 6℃ higher on average than other types of sheets when the heating sheet is attached on the bottom of the double layered bubble sheet. For future research, it is planned to verify the heating performance by using the heating sheet under the same environmental conditions as the heating performance will be verified.

  • PDF

Effect of the Kind of Modified Bubble Sheets on the Temperature Profiles and Crack Reduction of the Concrete under Hot Weather (표면개량 버블시트 종류 변화가 서중환경 콘크리트의 온도 및 균열발생에 미치는 영향)

  • Lee, Sang-Woon;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2018
  • There are various quality deteriorations of concrete such as plastic, drying shrinkage due to abrupt moisture evaporation, slump loss and cold joint under hot weather condition. To protect from above deteriorations, several kinds of modified bubble sheets have been applied to secure heat insulation performance. But, there is not enough application cases of bubble sheets at job site under hot weather condition. The objective of the paper is to investigate the temperature profile and crack occurrence of the concrete covered with five different kinds of surface curing sheets, which is placed under hot weather condition. Single layer transparent bubble sheet, white colored bubble sheet, aluminum metalizing bubble sheet and PE film are adopted for surface curing sheets. Test results indicated that application of aluminum metalizing bubble sheet had most favorable effect on the reduction of on temperature rise and on the crack reduction of concrete. But due to larger reflection of light by aluminum, it brings about visual pollution to the workers. Hence, the application of white colored bubble sheet can be the most desirable alternative to protect the concrete from hot weather in the field.

A Study on the Temperature Change of Green House using Aerogel (에어로젤을 사용한 시설하우스의 온도 변화에 대한 연구)

  • Yang, Ji-Ung;Lee, Eun-Suk;Ko, Joon-Young;Kim, Won-Kyung;Byun, Jae-Young;Park, Jin-Gyu;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1067-1074
    • /
    • 2020
  • Green houses provide a more conditioned and warmer environment than the outside environment due to insulation. Currently used insulation materials include soft film (PVC, PE, EVA), foamed PE sheet, non-woven fabric, reflective film, and multi-layer insulation curtain, but there are many disadvantages and to compensate for this, silica aerogel insulation material with excellent warmth, light weight, and small volume Research using is in progress. In this study, the temperature change of the quadruple-structure green house and the temperature change in the dual-structure green house of soft film and silica airgel were investigated. The daytime temperature change was highest in A and A2 (soft film) at 10 to 16:00 after sunrise, but showed the lowest temperature at 17 to 18:00, which is the sunset time, showing the greatest change. The airgels of D and D2 showed the smallest change in temperature after sunrise and right after sunset. That is, it can be said that the airgel is hardly affected by external temperature. The temperature change at night was highest in D and D2 (aerogel) for both quadruple and dual structures. The temperature at night was measured higher in the quadruple structure than in the double structure. As for the ratio of the internal temperature to the external temperature for the quadruple structure and the double structure, D (aerogel) was not affected by the external temperature during the day in the quadruple structure and the double structure. D (Aerogel) seems to be able to reduce the damage caused by high temperatures in summer due to the high thermal insulation effect of the airgel, as the temperature rises above 4℃ at night. And in winter, it helps to save heating costs due to less heat emitted to the outside.

The Planning of Temporary Housing for Post Application of Mega Sports Facilities - Focused on the 2018 Winter Olympics - (메가스포츠시설의 사후 활용을 위한 임시주거 계획 - 2018평창동계올림픽을 중심으로 -)

  • Lee, Jong-Chan;Kang, Youn-Do;Kim, Byung-Sean
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.41-46
    • /
    • 2016
  • Purpose: This is a study on the planning of temporary housing for post application of Mega Sports facilities. The subject of the study is 2018 Pyeongchang Winter Olympics, which is to suggest building an alternative temporary housing using shipping containers(high cube), which solve the lack of accommodations and recycle temporary housing after Olympics, save money and be eco-friendly in Olympics. Method: This study includes this ; research on the a fact-finding survey about Mega sports facilities post application and demand survey on 2018 Pyeongchang Winter Olympics accomodations and an analysis about temporary housing plan. Furthermore we decided temporary housing building plan by analyzing residents' needs and traits of the housing etc. Through this, we made a schematic design for household units. Result: As a result, this study is a plan of making space, forms, and structure. The planned size is $38.4m^2$(L:12m, W:3.2m) except balcony, and indoor height is 2.5m. The space consists of entrance, bathroom, bedroom and living room with folding furniture system. Also there's a detailed floor plan of the ceiling, wall, and floor we drew up. The ceiling and wall consist of dampproof film, noncombustible board, fire proof urethane form, and color-designed sheet. The floor is composed of floor tile, cement mortar, light concrete(with heat coil), insulation, and dampproof film. Additionally, this study is a plan of interior dry wall with detail using modular construction method for work efficiency and quality improvement.