• 제목/요약/키워드: ligature-induced periodontitis

검색결과 24건 처리시간 0.021초

숙지황(熟地黃) 추출물의 치주염 개선 효과 연구 (Inhibitory effects of the steamed radix of Rehmanniae glutinosa against ligature-induced periodontitis)

  • 백희경;김미혜;양웅모
    • 대한융합한의학회지
    • /
    • 제4권1호
    • /
    • pp.29-36
    • /
    • 2022
  • Objectives : The purpose of this study was to investigate the anti-inflammatory effects of the aqueous extract of the steamed radix of Rehmanniae glutinosa (SRG) on periodontitis in ligature-induced rat model. Methods: To induce the periodontitis, ligature was placed around the lower first molar in rats. Rats were divided into 4 groups (n = 7), NL (non-ligatured and vehicle-treated), L (ligatured and vehicle-treated), SRG1 (ligatured and 1 mg/kg SRG-treated) and SRG100 (ligatured and 100 mg/kg SRG-treated). Vehicle or SRG solution was applied daily for 14 days and then all experimental rats were sacrificed. To examine the effect of SRG solution on periodontitis, the level of alveolar bone loss, cementum regeneration, gingival tissue degradation, and osteoclast cell numbers were analyzed. Results: Alveolar bone loss was inhibited in ligature-induced periodontitis rats treated with SRG treatment. Histopathological cementum was recovered in SRG1 and SRG100 groups. SRG extract inhibited gingival tissue degradation induced by ligature. In addition, the numbers of osteoclast cells were decreased by treatment SRG in periodontitis rats. Conclusion: Taken together, these results suggest that SRG have inhibitory effects against periodontitis. Therefore, the steamed radix of Rehmanniae glutinosa has may be a potential alternative for periodontitis.

Mongolian Gerbil as a Novel Animal Model for Ligature-induced Periodontitis

  • Jang, Sungil;Bak, Eun-Jung
    • International Journal of Oral Biology
    • /
    • 제41권4호
    • /
    • pp.225-230
    • /
    • 2016
  • Inflammation from chronic and acute infections of distal organs and tissues such as periodontitis is a risk factor for atherosclerotic vascular processes. Recently, a new model of atherosclerosis with vascular pathologies was developed in the Mongolian gerbil. In this study, we attempted to develop a model of ligature-induced periodontitis in gerbils and compared the characteristics of that periodontitis model with that in rats and mice. Each gerbil, rat, and mouse was randomly assigned to groups of control and periodontitis. A thread was placed around the cervix of the right and left first molars in the mandible with knots placed on the mesial side of each molar. At day 14 after the ligation, the animals were sacrificed and their mandibles were dissected. To measure alveolar bone loss along with inflammation, histopathological and micro-CT analyses were carried out. Gerbils showed tooth characteristics of deeper gingival crevice, longer cusp, longer root trunk and shorter root than those of rats and mice. The increased CEJ-ABC distance in distal and PDL area in furcation was also observed in ligated gerbils. An inflammatory response in the connective tissue under the junctional epithelium was also shown in all the animals. As a result, we confirmed the induction of periodontitis by ligature in the gerbils. We therefore consider the gerbil to be a useful model for investigating relationship between periodontitis and vascular disease in the same animal.

Protective Effect of HP08-0106 on Ligature-induced Periodontitis in Rats

  • Choi, Hwa-Jung;Cho, Hyoung-Kwon;Soh, Yun-Jo
    • International Journal of Oral Biology
    • /
    • 제36권4호
    • /
    • pp.187-194
    • /
    • 2011
  • Periodontitis is an inflammatory disorder of the periodontium, characterized by destruction of the tooth supporting tissues including alveolar bone and mediated by various pro-inflammatory mediators. Here, we demonstrated that HP08-0106, composed of four crude drugs-Gardenia jasminoides Grandiflora, Angelica gigas Nakai, Rehmannia glutinosa, and Schizonepeta tenuifolia in a weight ratio of 2:2:1:2, perturbs inflammatory responses, osteoclast formation in LPS-induced RAW 264.7 cells and alveolar bone resorption in ligature-induced periodontitis. HP08-0106 decreased the protein level of iNOS and COX2 as well as the secreted level of IL-$1{\beta}$, indicating that HP08-0106 has antiinflammatory effects. HP08-0106 also inhibited the expression of genes associated with osteoclastogenesis including c-Fos, MMP-9 and TRAP. Moreover, HP08-0106 exhibited a protective effect from alveolar bone loss in ligature-induced periodontitis animal models. Our results strongly suggest that HP08-0106 represent an important therapeutic tool to treat inflammatory disorders associated with bone loss such as periodontitis.

Effects of Lactobacillus reuteri MG5346 on Receptor Activator of Nuclear Factor-Kappa B Ligand (RANKL)-Induced Osteoclastogenesis and Ligature-Induced Experimental Periodontitis Rats

  • Yu-Jin Jeong;Jae-In Jung;YongGyeong Kim;Chang-Ho Kang;Jee-Young Imm
    • 한국축산식품학회지
    • /
    • 제43권1호
    • /
    • pp.157-169
    • /
    • 2023
  • Effects of culture supernatants of Lactobacillus reuteri MG5346 (CS-MG5346) on receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis were examined. CS-MG5346 treatment up to 400 ㎍/mL significantly reduced tartrate-resistant acid-phosphatase (TRAP) activity, the phenotype biomarker of osteoclast, without affecting cell viability. CS-MG5346 inhibited the expression of osteoclast specific transcriptional factors (c-fos and nuclear factor-activated T cells c1) and their target genes (TRAP, cathepsin, and matrix metallo-proteinase-9) in a dose-dependent manner (p<0.05). The administration of L. reuteri MG5346 (2×108 CFU/day) for 8 wks significantly improved furcation involvement, but no difference was observed in alveolar bone loss in ligature-induced experimental periodontitis rats. The elevated RANKL/osteoprotegerin ratio, the biomarker of periodontitis, was significantly lowered in the gingival tissue by administration of L. reuteri MG5346 (p<0.05). L. reuteri MG5346 showed excellent stability in simulated stomach and intestinal fluids and did not have antibiotic resistance. Based on the results, L. reuteri MG5346 has the potential to be a promising probiotic strain for oral health.

Protective Effect of HP08-0111 on Ligature-Induced Periodontitis

  • Park, Young-Ran;Cho, Hyoung-Kwon;Soh, Yun-Jo
    • International Journal of Oral Biology
    • /
    • 제35권4호
    • /
    • pp.145-151
    • /
    • 2010
  • Periodontitis is an inflammatory disorder of the periodontium and is characterized by destruction of the tooth supporting tissues, mediated by the upregulation of synthesis and release of a variety of pro-inflammatory factors. Inflammatory cytokines and prostaglandins upregulate RANKL and its subsequent binding to RANK stimulates osteoclast formation, resorption activity, and survival. In our present study, we investigated the effects of HP08-0111, composed of Coptis japonica (Thunb.) Makino, vitamin C and vitamin E, upon inflammatory responses, osteoclastogenesis and alveolar bone loss. HP08-0111 decreased the expression of IL-1$\beta$ and COX2 on LPS-induced RAW 264.7 cells and inhibited osteoclast-specific genes such as c-Fos, MMP-9, and TRAP. HP08-0111 also exhibited protective effects against alveolar bone loss in rats with ligature-induced periodontitis. Our results suggest that HP08-0111 is potentially an important therapeutic tool for the treatment of disorders associated with bone loss such as periodontitis.

Phagocytic osteoclasts in the alveolar bone of diabetic rats with periodontitis

  • Bak, Eun-Jung;Kim, Ae Ri;Kim, Ji-Hye;Yoo, Yun-Jung
    • International Journal of Oral Biology
    • /
    • 제45권3호
    • /
    • pp.92-98
    • /
    • 2020
  • Periodontitis is a bacteria-induced inflammatory disease associated with alveolar bone loss. Osteoclast is a macrophage-lineage cell that exhibits phagocytic activity; however, osteoclast phagocytic activity has not been demonstrated under pathological conditions. Diabetes is a pathological condition that exacerbates alveolar bone loss via periodontitis; therefore, we examined phagocytic osteoclasts in diabetic rats that had periodontitis. The rats were divided into the control (C), periodontitis (P), and diabetes with periodontitis (DP) groups. Diabetes and periodontitis were induced by streptozotocin injection and ligature of the mandibular first molars, respectively. On days 3 and 20 after the ligature, the rats were sacrificed, and osteoclasts containing inclusions were quantified by tartrate-resistant acid phosphatase staining. On day 3, there were more osteoclasts containing inclusions in the DP group than in the C group. Among inclusions, osteocyte-like cells and dense bodies were more frequently observed in the DP group than in the C group. Cytoplasm-like structures were elevated more in the DP group than in the C and P groups. However, no differences were observed on day 20. Interestingly, some osteoclasts were in contact with the osteocytes within the exposed lacunae and contained several inclusions within a large vacuole. Thus, the elevation of phagocytic osteoclasts in rats with diabetes and periodontitis provides insight into the role of osteoclast phagocytic activity under pathological conditions.

Topical application of herbal formula for the treatment of ligature-induced periodontitis

  • Kim, Mi Hye;Choi, You Yeon;Lee, Hye Ji;Lee, Haesu;Park, Jung-Chul;Yang, Woong Mo
    • Journal of Periodontal and Implant Science
    • /
    • 제45권4호
    • /
    • pp.145-151
    • /
    • 2015
  • Purpose: The aim of this study was to investigate the therapeutic effects of a herbal formula, PerioH-035, containing Angelica sinensis, steamed Rehmannia glutinosa, Angelica dahurica, Cimicifuga heracleifolia, and Zanthoxylum piperitum on the periodontal breakdown in a well-established ligature-induced periodontitis model in rats. Methods: Sprague-Dawley rats were randomly assigned to 1 of 4 groups: NL (non-ligatured), L (ligatured), P1 (ligatured and treated with 1 mg/mL PerioH-035), P100 (ligatured and treated with 100 mg/mL PerioH-035). Periodontitis was induced by placing a ligature around the mandibular first molars. PerioH-035 was topically applied to both sides of the first molar for 2 weeks. The right side of the mandibles was retrieved for micro-computed tomography (CT) and methylene blue staining to analyze alveolar bone loss. The left side of the mandibles was histologically analyzed by TRAP and H&E staining. The MMP-9 mRNA level in gingival tissue was investigated by RT-PCR. Results: Alveolar bone resorption was significantly reduced in the PerioH-035-treated groups. The number of dense multi-nucleated cells found to be TRAP-positive by staining in the ligatured rats was markedly decreased by PerioH-035 application. In addition, periodontal tissue destruction, especially cementum demineralization, was ameliorated in the P1 and P100 groups. Moreover, gingival tissue from the PerioH-035-treated group showed a decrease in the MMP-9 mRNA level, resulting in recovery of collagen degradation. Conclusions: These results suggest that PerioH-035 has therapeutic effects on periodontitis, and thus, PerioH-035 shows promise as a treatment for periodontitis.

Inhibitory Effect of SPA0355, a Thiourea Analogue, on Inflammation and Alveolar Bone Loss in Rats with Ligature-Induced Periodontitis

  • Bak, Eun-Jung;Kim, Ji-Hye;Lee, Dong-Eun;Park, Byung-Hyun;Ryu, Jae-Ha;Cha, Jeong-Heon;Jeon, Ra-Ok;Yoo, Yun-Jung
    • International Journal of Oral Biology
    • /
    • 제37권2호
    • /
    • pp.63-68
    • /
    • 2012
  • It has been documented that SPA0355 exerts antiinflammatory effects via the inhibition of nuclear factor-kappaB activation. In present study, we investigated the inhibitory effects of SPA0355 on periodontitis in an animal model. Periodontitis was induced by ligation of the cervix of the 1st molar in the left mandible in rats. After ligature, the rats were randomly divided into four groups and topically applied with SPA0355 (0.5, 1, and 2%) or the vehicle alone once daily for 10 days. Body weight and food intake were measured daily throughout the experimental period. At day 10 post-ligature, the infiltration of inflammatory cells and distance of the cementoenamel junction (CEJ) to the alveolar bone crest (ABC) in the distal area of ligatured tooth were estimated histopathologically. No changes in body weight or food intake were found between the control and SPA0355 groups. The degree of inflammation was decreased in all three SPA0355 application groups. A decrease CEJ-ABC distance was observed in the 0.5% and 1% SPA0355 groups. These results indicate that SPA0355 inhibits the infiltration of inflammatory cells and alveolar bone resorption and suggests its potential as a therapeutic agent for periodontitis.

Temporal changes of periodontal tissue pathology in a periodontitis animal model

  • Hyunpil Yoon;Bo Hyun Jung;Ki-Yeon Yoo;Jong-Bin Lee;Heung-Sik Um;Beom-Seok Chang;Jae-Kwan Lee
    • Journal of Periodontal and Implant Science
    • /
    • 제53권4호
    • /
    • pp.248-258
    • /
    • 2023
  • Purpose: This study aimed to characterize the early stages of periodontal disease and determine the optimal period for its evaluation in a mouse model. The association between the duration of ligation and its effect on the dentogingival area in mice was evaluated using micro-computed tomography (CT) and histological analysis. Methods: Ninety mice were allocated to an untreated control group or a ligation group in which periodontitis was induced by a 6-0 silk ligation around the left second maxillary molar. Mice were sacrificed at 1, 2, 3, 4, 5, 8, 11, and 14 days after ligature placement. Alveolar bone destruction was evaluated using micro-CT. Histological analysis was performed to assess the immune-inflammatory processes in the periodontal tissue. Results: No significant difference in alveolar bone loss was found compared to the control group until day 3 after ligature placement, and a gradual increase in alveolar bone loss was observed from 4 to 8 days following ligature placement. No significant between-group differences were observed after 8 days. The histological analysis demonstrated that the inflammatory response was evident from day 4. Conclusions: Our findings in a mouse model provide experimental evidence that ligature-induced periodontitis models offer a consistent progression of disease with marginal attachment down-growth, inflammatory infiltration, and alveolar bone loss.

Root Resorption in Streptozotocin-induced Diabetic Rats with Ligature-induced Periodontitis

  • Kim, Ji-Hye;Lee, Dong-Eun;Park, Jung-Chul;Kim, Yoon Jae;Cha, Jeong-Heon;Bak, Eun-Jung;Yoo, Yun-Jung
    • International Journal of Oral Biology
    • /
    • 제40권3호
    • /
    • pp.111-116
    • /
    • 2015
  • To determine the effect of diabetes on root resorption in periodontitis, we investigated odontoclast formation and root resorption in diabetic rats with periodontitis. Odontoclast formation was observed in three groups of F344 rats: Controls (C) were normal rats without diabetes or periodontitis; the periodontitis (P) group had mandibular first molars to be ligatured; the periodontitis with diabetes (PD) group was intravenously administered streptozotocin (50 mg/kg) to induce diabetes and had mandibular first molars to be ligatured. On days 3, 10, and 20 after ligature, tumor necrosis factor (TNF)-${\alpha}$ and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) expression, odontoclast formation, and root resorption areas were evaluated by immunohistochemistry, tartrate-resistant acid phosphatase staining, and hematoxylin and eosin staining, respectively. The PD group showed frequent urination, weight loss, and hyperglycemia. Numbers of TNF-${\alpha}$- and RANKL-positive cells were higher in the P and PD groups than in the C group. It was more prevalent in PD group on day 3. Odontoclast formation was greater in the P and PD groups than in the C group on days 3 and 10, then decreased to same level as the C group by day 20. Root resorption in the PD and P groups showed increases on days 3 and 10, respectively, compared to the C group. These results suggest that diabetes may transiently increase root resorption on day 3 with high expression of TNF-${\alpha}$ and RANKL after periodontitis induction. This study could aid the understanding of root resorption in diabetic patients with periodontitis.