• Title/Summary/Keyword: lift and drag coefficient

Search Result 212, Processing Time 0.024 seconds

Control of vortex shedding from circular cylinder by acoustic excitation (원통내부의 음향여기에 의한 와류유출제어)

  • Kim, Gyeong-Cheon;Bu, Jeong-Suk;Lee, Sang-Uk;Gu, Myeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1649-1660
    • /
    • 1996
  • The flow around a circular cylinder was controlled by an acoustic excitation issued from a thin slit along the cylinder axis. The static pressure distributions around the cylinder wall and flow characteristics in the near wake have been measured. Experiments were performed under three cases of Reynolds number, 7.8 * 10$\^$4/, 2.3 * 10$\^$5/ and 3.8 * 10$\^$5/. The effects of excitation frequency, sound pressure level and the location of the slit were examined. Data indicate that the excitation frequency and the slit location are the key parameters for controlling the separated flow. At Re$\_$d/, = 7.8 * 10$\^$4/, the drag is reduced and the lift is generated to upward direction, however, at Re$\_$d/, =2.3 * 10$\^$5/ and 3.8 * 10$\_$5/, the drag is increased and lift is generated to downward direction inversely. It is thought that the lift switching phenomenon is due to the different separation point of upper surface and lower surface on circular cylinder with respect to the flow regime which depends on the Reynolds number. Vortex shedding frequencies are different at upper side and lower side. Time-averaged velocity field shows that mean velocity vector and the points of maximum intensities are inclined to downward direction at Re$\_$d/ = 7.8 * 10$\^$4/, but are inclined to upward direction at Re$\_$d/ = 2.3 * 10$\^$5/.

Optimal Shape of Blunt Device for High Speed Vehicle

  • Rho, Joo-Hyun;Jeong, Seongmin;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.285-295
    • /
    • 2016
  • A contact strip shape of a high speed train pantograph system was optimized with CFD to increase the aerodynamic performance and stability of contact force, and the results were validated by a wind tunnel test. For design of the optimal contact strip shape, a Kriging model and genetic algorithm were used to ensure the global search of the optimal point and reduce the computational cost. To enhance the performance and robustness of the contact strip for high speed pantograph, the drag coefficient and the fluctuation of the lift coefficient along the angle of attack were selected as design objectives. Aerodynamic forces were measured by a load cell and HWA (Hot Wire Anemometer) was used to measure the Strouhal number of wake flow. PIV (Particle Image Velocimetry) was adopted to visualize the flow fields. The optimized contact strip shape was shown a lower drag with smaller fluctuation of vertical lift force than the general shaped contact strip. And the acoustic noise source strength of the optimized contact strip was also reduced. Finally, the reduction amount of drag and noise was assessed when the optimized contact strip was applied to three dimensional pantograph system.

Numerical Study on the Aerodynamic Characteristics of Wings on the Formation Flight (편대비행 중인 날개들의 공력특성에 대한 수치적 연구)

  • Lee, Seung-Jae;Cho, Jeong-Hyun;Lee, Sea-Wook;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.18-26
    • /
    • 2007
  • The steady-state aerodynamic characteristics of wings on the formation flight were analyzed using the Vortex Lattice Method. When two wings were at formation flight, the sectional lift coefficient of a rear wing was increased due to a front wing. The result showed that the lift drag ratio increased as the rear wing were placed downward and decreased as the lateral spacing between wings increased. The difference of lift drag ratio between forward wing and rear wing increase as the aspect ratio of wings increased. When a rear wings and a forward wings placed at the same height, wings on the formation flight had the maximum lift drag ratio. The results showed that the benefit of the formation flight increased as the number of wings on the formation flight increased.

Numerical studies on non-shear and shear flows past a 5:1 rectangular cylinder

  • Zhou, Qiang;Cao, Shuyang;Zhou, Zhiyong
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.379-397
    • /
    • 2013
  • Large Eddy Simulations (LES) were carried out to investigate the aerodynamic characteristics of a rectangular cylinder with side ratio B/D=5 at Reynolds number Re=22,000 (based on cylinder thickness). Particular attention was devoted to the effects of velocity shear in the oncoming flow. Time-averaged and unsteady flow patterns around the cylinder were studied to enhance understanding of the effects of velocity shear. The simulation results showed that the Strouhal number has no significant variation with oncoming velocity shear, while the peak fluctuation frequency of the drag coefficient becomes identical to that of the lift coefficient with increase in velocity shear. The intermittently-reattached flow that features the aerodynamics of the 5:1 rectangular cylinder in non-shear flow becomes more stably reattached on the high-velocity side, and more stably separated on the low-velocity side. Both the mean and fluctuating drag coefficients increase slightly with increase in velocity shear. The mean and fluctuating lift and moment coefficients increase almost linearly with velocity shear. Lift force acts from the high-velocity side to the low-velocity side, which is similar to that of a circular cylinder but opposite to that of a square cylinder under the same oncoming shear flow.

Reynolds number effects on flow over twisted offshore structure with drag reduction and vortex suppression (레이놀즈 수가 와류 감쇠 및 저항 저감형 나선형 해양 구조물 주위 유동에 미치는 영향)

  • Jung, Jae-Hwan;Yoon, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • We investigated the Reynolds number effects on the flow over a twisted offshore structure in the range of 3×103≤ Re ≤ 1 × 104. To analyze the effect of the twisted surface treatment, a large eddy simulation (LES) with a dynamic subgrid model was employed. A simulation of the cylindrical structure was also carried out to compare the results with those of the twisted offshore structure. As Re increased, the mean drag and lift coefficient of the twisted offshore structure increased with the same tendency as those of the cylindrical structure. However, the increases in the mean drag and lift coefficient of the twisted offshore structure were much smaller than those of the cylindrical structure. Furthermore, elongated shear layer and suppressed vortex shedding from the twisted offshore structure occurred compared to those of the cylindrical cylinder, resulting in a drag reduction and suppression of the vortex-induced vibration (VIV). In particular, the twisted offshore structure achieved a significant reduction of over 96% in VIV compared with that of the cylindrical structure, regardless of increasing Re. As a result, we concluded that the twisted offshore structure effectively controlled the flow structures with reductions in the drag and VIV compared with the cylindrical structure, irrespective of increasing Re.

Aerodynamic modification of setback distance at half height of the tall building to minimize the wind effect

  • Bairagi, Amlan Kumar;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.193-211
    • /
    • 2022
  • The present study focuses on aerodynamic parameters behaviors and control on the single and double side setback building models at the buildings mid-height. The study is conducted by computational fluid dynamics (CFD) simulation. This study estimates the face wise pressure coefficient on single side setback buildings with a setback range of 20%-50% and double side setback buildings with setbacks ranging from 10%-25%. The polynomial fitted graphs from CFD data predict the Cp on different setback model faces within permissible limit ±13% error. The efficient model obtained according to the minimum drag, lift, and moment consideration for along and across wind conditions. The study guides the building tributary area doesn't control the drag, lift, and moment on setback type buildings. The setback distance takes a crucial role in that. The 20% double side setback model is highly efficient to regulate the moment for both along and across wind conditions. It reduces 17.5% compared to the 20% single side setback and 14% moment compared to the 10% double side setback models. The double side setback building is more efficient to control 4.2% moment than the single side setback building

Experimental study on the performance of urban small vertical wind turbine with different types (도시형 소형 수직축 풍력 발전기의 형태별 성능에 대한 실험적 고찰)

  • Kang, Deok-Hun;Shin, Won-Sik;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.64-68
    • /
    • 2014
  • This paper is intended to provide experimental data for the design of the small VAWT(vertical axis wind turbine). Three types(lift, drag, and hybrid) of the blade of VAWT are tested with digital wind tunnel in this study. From the test, the relation of power coefficient and tip speed ratio for the blades are evaluated and compared each other depending on the blade type. Especially, the characteristics of hybrid blade which is shown to be expanded in the market without any logical data is proposed in the relation of power coefficient and tip speed ratio. It is shown that the hybrid blade can be used to make higher starting torque with trade off of degradation of power coefficient.

Study of random characteristics of fluctuating wind loads on ultra-large cooling towers in full construction process

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.191-204
    • /
    • 2018
  • This article presents a study of the largest-ever (height = 220 m) cooling tower using the large eddy simulation (LES) method. Information about fluid fields around the tower and 3D aerodynamic time history in full construction process were obtained, and the wind pressure distribution along the entire tower predicted by the developed model was compared with standard curves and measured curves to validate the effectiveness of the simulating method. Based on that, average wind pressure distribution and characteristics of fluid fields in the construction process of ultra-large cooling tower were investigated. The characteristics of fluid fields in full construction process and their working principles were investigated based on wind speeds and vorticities under different construction conditions. Then, time domain characteristics of ultra-large cooling towers in full construction process, including fluctuating wind loads, extreme wind loads, lift and drag coefficients, and relationship of measuring points, were studied and fitting formula of extreme wind load as a function of height was developed based on the nonlinear least square method. Additionally, the frequency domain characteristics of wind loads on the constructing tower, including wind pressure power spectrum at typical measuring points, lift and drag power spectrum, circumferential correlations between typical measuring points, and vertical correlations of lift coefficient and drag coefficient, were analyzed. The results revealed that the random characteristics of fluctuating wind loads, as well as corresponding extreme wind pressure and power spectra curves, varied significantly and in real time with the height of the constructing tower. This study provides references for design of wind loads during construction period of ultra-large cooling towers.

Study on the fluid resistance coefficient for control simulation of an underwater vehicle (수중로봇 제어 시뮬레이션을 위한 유체저항계수 연구)

  • Park, Sang-Wook;Kim, Min-Soo;Sohn, Jeong-Hyun;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • Remotely operated vehicles or autonomous underwater vehicles have been used for exploiting seabed natural resources. In this study, the autonomous underwater vehicle of hovering type(HAUV) is developed to observe underwater objects in close distance. A dynamic model with six degrees of freedom is established, capturing the motion characteristics of the HAUV. The equations of motion are generated for the dynamic control simulation of the HAUV. The added mass, drag and lift forces are included in the computer model. Computational fluid dynamics simulation is carried out using this computer model. The drag coefficients are produced from the CFD.

Aerodynamic Characteristics of 2-D, Unsteady Flow Past a Square Cylinder (Revaluation of SOLA Scheme) (2차원각주의 비정상 공력특성(SOLA스킴의 재평가))

  • 이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.48-65
    • /
    • 1990
  • Numerical solutions of the Navier-Stokes equations, governing 2-dimensional, time-dependent, viscous, incompressible fluid flow past a square cylinde in an infinite region, are presented for Reynolds numbers $10^2$, $10^3$and $10^4$. Finite-difference scheme, based on SOLA-VOF is adopted and a discretization of the convection term for irregular grid is newly suggested by altering the original nonconservation form into conservation one. Distribution of finer grids around the body reveals fairly reasonable consistency with the experimental variables : drag coefficient, lift coefficient, Strouhal number, fluctuating pressure coefficient, etc.

  • PDF