본 논문에서는 차량 번호판에서 추출된 문자영역의 DCT(Digital Cosine Transform) 계수와 LVQ(Learning Vector quantization) 신경회로망을 이용하여 상대적으로 간결한 구조로 잡음의 영향을 적게 받는 차량 번호판 인식 시스템을 제안하였다. 입력된 차량영상의 RGB칼라정보를 이용하여 번호판 영역을 추출하고 추출된 번호판의 히스토그램과 문자의 상대적 위치정보를 병합하여 문자영역을 추출하였다. 이렇게 추출된 문자영역의 명암도 영상에 DCT를 적용하여 얻은 특징 벡터를 LVQ신경회로망의 입력으로 사용하여 인식 과정을 수행한다. 본 논문의 실험과정에서는 다양한 환경에서 촬영된 109대의 자가용 차량영상에 대하여 제안된 시스템을 실험하였으며 상대적으로 높은 번호판 영역 추출율과 인식률을 보였다.
International journal of advanced smart convergence
/
제9권1호
/
pp.113-120
/
2020
Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.
최근 지능형 교통관제 시스템에 관한 다양한 연구가 진행되고 있는 가운데 번호판 검출과 인식 알고리즘은 가장 중요한 요소 중에 하나로 대두되고 있다. 번호판은 차량의 고유 식별값을 가지고 있기 때문이다. 기존의 차량 통행 관제 시스템은 정차를 기반으로 하고 있으며 차량의 입출입 인식 방법으로 루프 코일을 사용하고 있다. 이러한 방법은 교통 정체를 유발하고 유지보수 비용이 상승하는 단점을 가지고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해서 차량의 입출입 인식 방법으로 카메라 영상을 사용한다. 차량 통행 관제 시스템의 특성상 카메라가 고정되어 있다. 이에 차량이 접근하면 카메라의 배경화면이 달라진다. 이 특징을 이용하여 배경화면의 차분영상을 구하면 차량의 입출입을 인식할 수 있다. 입출입 인식 후 한국 번호판의 형태학적 특성을 이용하여 후보 이미지를 추정한다. 그리고 선형 SVM(Support Vector Machine)을 이용해서 최종 번호판을 검출한다. 검출한 번호판의 글자와 숫자 인식 방법으로는 CNN(Convolutional Neural Network) 알고리즘을 사용한다. 제안한 알고리즘은 기존의 시스템과 달리 검출 위치를 기준으로 글자와 숫자를 인식하기 때문에 번호판의 규격이 변해도 인식할 수 있다. 실험한 결과 기존의 번호판 인식 알고리즘들 보다 제안한 알고리즘이 더 높은 인식률을 가진다.
Lim, Eun-Kyung;Kim, Young-Ju;Kim, Dae-Su;Kwang-Baek, Kim
한국지능시스템학회:학술대회논문집
/
한국퍼지및지능시스템학회 2003년도 ISIS 2003
/
pp.648-651
/
2003
In this paper, we propose the recognition system of a license plate using SOM algorithm. The recognition of license plate was investigated by means of the SOM algorithm. The morphological information of horizontal and vertical edges was used to extract a plate region from a car image. In addition, the 4-direction contour tracking algorithm was applied to extract the specific area, which includes characters from an extracted plate area. Therefore, we proposed how to extract license plate region using morphological information and how to recognize the character string using SOM algorithm. In this paper, 50 car images were tested. The extraction rate obtained by the proposed extraction method showed better results than that from the color information of RGB and HSI, respectively. And the license plate recognition using SOM algorithm was very efficient.
Sarker, Md. Mostafa Kamal;Yoon, Sook;Park, Dong Sun
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권10호
/
pp.3490-3507
/
2014
License plate detection (LPD) is one of the most important aspects of an automatic license plate recognition system. Although there have been some successful license plate recognition (LPR) methods in past decades, it is still a challenging problem because of the diversity of plate formats and outdoor illumination conditions in image acquisition. Because the accurate detection of license plates under different conditions directly affects overall recognition system accuracy, different methods have been developed for LPD systems. In this paper, we propose a license plate detection method that is rapid and robust against variation, especially variations in illumination conditions. Taking the aspects of accuracy and speed into consideration, the proposed system consists of two stages. For each stage, Haar-like features are used to compute and select features from license plate images and a cascade classifier based on the concatenation of classifiers where each classifier is trained by an AdaBoost algorithm is used to classify parts of an image within a search window as either license plate or non-license plate. And it is followed by connected component analysis (CCA) for eliminating false positives. The two stages use different image preprocessing blocks: image preprocessing without adaptive thresholding for the first stage and image preprocessing with adaptive thresholding for the second stage. The method is faster and more accurate than most existing methods used in LPD. Experimental results demonstrate that the LPD rate is 98.38% and the average computational time is 54.64 ms.
본 논문에서는 일반 도로상에 설치된 CCTV 영상으로부터 차량 검출과 번호판을 인식하는 시스템을 제안하였다. 본 시스템의 환경은 일반 도로 환경에서 영상을 취득하기 때문에 기존의 차량 진출입 시스템에 적용되는 안정적인 조건이 주어지지 않으며 입력 영상이 왜곡되고 해상도가 불규칙적이다. 동시에 입력 영상의 시야각이 넓어 연산량이 높고 번호판의 인식 정확도가 떨어지기 쉽다. 본 논문에서는 별도의 입력 제어 장치 없이 차량을 검출하고, 번호판 검출 및 인식이 가능한 향상된 방법을 제안하였다. HOG 특징 기술자를 기반으로 차량 및 번호판을 검출하고, k-NN 알고리즘을 사용하여 번호판 내부 문자의 인식을 수행하였다. CCTV에서 45m 이상 떨어진 장소의 도로를 실험 환경으로 설정하고, 육안으로 번호판을 식별할 수 있는 진입 차량에 대한 실험을 진행하였으며 실험을 통하여 제안 방식의 우수한 결과를 확인하였다.
Recognizing a license plate of a vehicle has widely been issued. In this thesis, firstly, mean shift algorithm is used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate. We then present an approach to recognize a vehicle's license plate using the Fuzzy ARTMAP neural network, a relatively new architecture of the neural network family. We show that the proposed system is well to recognize the license plate and shows some compute simulations.
Automatic license plate recognition (LPR) is one of the critical techniques of the intelligent transportation system (ITS), in which license plate location plays an important role. In this paper, through surveying the international existing techniques, a new method for locating license plate is proposed: utilize row scan method to locate up and down boundary of the plate; and based on the location of up and down boundary, take advantage of the feature of plate area to locate left and right boundary of the plate. The tests of using the proposed algorithms have been conducted. The experimental results show that the proposed approaches are reasonable and accurate.
Sarker, Md.Mostafa Kamal;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
한국통신학회논문지
/
제38C권12호
/
pp.1114-1125
/
2013
License Plate Detection (LPD) is a key component in automatic license plate recognition system. Despite the success of License Plate Recognition (LPR) methods in the past decades, the problem is quite a challenge due to the diversity of plate formats and multiform outdoor illumination conditions during image acquisition. This paper aims at automatical detection of car license plates via image processing techniques. In this paper, we proposed a real-time and robust method for license plate detection using Heuristic Energy Map(HEM). In the vehicle image, the region of license plate contains many components or edges. We obtain the edge energy values of an image by using the box filter and search for the license plate region with high energy values. Using this energy value information or Heuristic Energy Map(HEM), we can easily detect the license plate region from vehicle image with a very high possibilities. The proposed method consists two main steps: Region of Interest (ROI) Detection and License Plate Detection. This method has better performance in speed and accuracy than the most of existing methods used for license plate detection. The proposed method can detect a license plate within 130 milliseconds and its detection rate is 99.2% on a 3.10-GHz Intel Core i3-2100(with 4.00 GB of RAM) personal computer.
본 논문에서는 투영면 컨벌루션과 결정트리 분류기법을 사용하여 주변 환경이 복잡한 차량영상으로부터 실시간으로 번호판을 추출하고 인식하는 적응적 차량번호판 인식 시스템을 제안하였다. 일반적으로 고속도로 톨게이트와 주차장 출입구에서의 차량영상은 설치 카메라와 도로 환경에 따라 차량번호판의 크기, 각도변화, 주변잡음 등으로 매우 다양하므로 번호판 추출과 분할이 어렵다. 따라서 본 논문에서는 차량 영상을 획득한 후 번호판 후보영역을 검출하고 진입 위치 변화에 따라 번호판의 기울기와 크기를 자동으로 보정하여 인식하는 알고리즘을 제안하였다. 제안한 인식 방법은 차량의 에지누적 분포와 번호판의 일정한 명암값 변화 빈도수를 누적한 투영면 컨벌루션과 체인코드를 사용하여 크기와 기울기가 일정하지 않은 번호판으로부터 번호판영역을 정확히 추출하고, 적응적 이진화 기법을 이용하여 문자를 분할하였다. 본 논문에서 제안한 방법으로써 실험한 결과 복잡한 영상에서 전방 및 후방 차량영상으로부터 번호판 인식이 가능하였으며 각각 $98.8\%$와 $95.5\%$의 추출률과 분할된 문자영역에서 $97.3\%$와 $96\%$의 인식률 개선 결과를 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.