• Title/Summary/Keyword: lexicon-based sentiment analysis

Search Result 35, Processing Time 0.018 seconds

Feature Weighting for Opinion Classification of Comments on News Articles (뉴스 댓글의 감정 분류를 위한 자질 가중치 설정)

  • Lee, Kong-Joo;Kim, Jae-Hoon;Seo, Hyung-Won;Rhyu, Keel-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.871-879
    • /
    • 2010
  • In this paper, we present a system that classifies comments on a news article into a user opinion called a polarity (positive or negative). The system is a kind of document classification system for comments and is based on machine learning techniques like support vector machine. Unlike normal documents, comments have their body that can influence classifying their opinions as polarities. In this paper, we propose a feature weighting scheme using such characteristics of comments and several resources for opinion classification. Through our experiments, the weighting scheme have turned out to be useful for opinion classification in comments on Korean news articles. Also Korean character n-grams (bigram or trigram) have been revealed to be helpful for opinion classification in comments including lots of Internet words or typos. In the future, we will apply this scheme to opinion analysis of comments of product reviews as well as news articles.

Crafting a Quality Performance Evaluation Model Leveraging Unstructured Data (비정형데이터를 활용한 건축현장 품질성과 평가 모델 개발)

  • Lee, Kiseok;Song, Taegeun;Yoo, Wi Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.157-168
    • /
    • 2024
  • The frequent occurrence of structural failures at building construction sites in Korea has underscored the critical role of rigorous oversight in the inspection and management of construction projects. As mandated by prevailing regulations and standards, onsite supervision by designated supervisors encompasses thorough documentation of construction quality, material standards, and the history of any reconstructions, among other factors. These reports, predominantly consisting of unstructured data, constitute approximately 80% of the data amassed at construction sites and serve as a comprehensive repository of quality-related information. This research introduces the SL-QPA model, which employs text mining techniques to preprocess supervision reports and establish a sentiment dictionary, thereby enabling the quantification of quality performance. The study's findings, demonstrating a statistically significant Pearson correlation between the quality performance scores derived from the SL-QPA model and various legally defined indicators, were substantiated through a one-way analysis of variance of the correlation coefficients. The SL-QPA model, as developed in this study, offers a supplementary approach to evaluating the quality performance of building construction projects. It holds the promise of enhancing quality inspection and management practices by harnessing the wealth of unstructured data generated throughout the lifecycle of construction projects.

Monitoring Mood Trends of Twitter Users using Multi-modal Analysis method of Texts and Images (텍스트 및 영상의 멀티모달분석을 이용한 트위터 사용자의 감성 흐름 모니터링 기술)

  • Kim, Eun Yi;Ko, Eunjeong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.419-431
    • /
    • 2018
  • In this paper, we propose a novel method for monitoring mood trend of Twitter users by analyzing their daily tweets for a long period. Then, to more accurately understand their tweets, we analyze all types of content in tweets, i.e., texts and emoticons, and images, thus develop a multimodal sentiment analysis method. In the proposed method, two single-modal analyses first are performed to extract the users' moods hidden in texts and images: a lexicon-based and learning-based text classifier and a learning-based image classifier. Thereafter, the extracted moods from the respective analyses are combined into a tweet mood and aggregated a daily mood. As a result, the proposed method generates a user daily mood flow graph, which allows us for monitoring the mood trend of users more intuitively. For evaluation, we perform two sets of experiment. First, we collect the data sets of 40,447 data. We evaluate our method via comparing the state-of-the-art techniques. In our experiments, we demonstrate that the proposed multimodal analysis method outperforms other baselines and our own methods using text-based tweets or images only. Furthermore, to evaluate the potential of the proposed method in monitoring users' mood trend, we tested the proposed method with 40 depressive users and 40 normal users. It proves that the proposed method can be effectively used in finding depressed users.

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.

The prediction of the stock price movement after IPO using machine learning and text analysis based on TF-IDF (증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용한 공모주의 상장 이후 주가 등락 예측)

  • Yang, Suyeon;Lee, Chaerok;Won, Jonggwan;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.237-262
    • /
    • 2022
  • There has been a growing interest in IPOs (Initial Public Offerings) due to the profitable returns that IPO stocks can offer to investors. However, IPOs can be speculative investments that may involve substantial risk as well because shares tend to be volatile, and the supply of IPO shares is often highly limited. Therefore, it is crucially important that IPO investors are well informed of the issuing firms and the market before deciding whether to invest or not. Unlike institutional investors, individual investors are at a disadvantage since there are few opportunities for individuals to obtain information on the IPOs. In this regard, the purpose of this study is to provide individual investors with the information they may consider when making an IPO investment decision. This study presents a model that uses machine learning and text analysis to predict whether an IPO stock price would move up or down after the first 5 trading days. Our sample includes 691 Korean IPOs from June 2009 to December 2020. The input variables for the prediction are three tone variables created from IPO prospectuses and quantitative variables that are either firm-specific, issue-specific, or market-specific. The three prospectus tone variables indicate the percentage of positive, neutral, and negative sentences in a prospectus, respectively. We considered only the sentences in the Risk Factors section of a prospectus for the tone analysis in this study. All sentences were classified into 'positive', 'neutral', and 'negative' via text analysis using TF-IDF (Term Frequency - Inverse Document Frequency). Measuring the tone of each sentence was conducted by machine learning instead of a lexicon-based approach due to the lack of sentiment dictionaries suitable for Korean text analysis in the context of finance. For this reason, the training set was created by randomly selecting 10% of the sentences from each prospectus, and the sentence classification task on the training set was performed after reading each sentence in person. Then, based on the training set, a Support Vector Machine model was utilized to predict the tone of sentences in the test set. Finally, the machine learning model calculated the percentages of positive, neutral, and negative sentences in each prospectus. To predict the price movement of an IPO stock, four different machine learning techniques were applied: Logistic Regression, Random Forest, Support Vector Machine, and Artificial Neural Network. According to the results, models that use quantitative variables using technical analysis and prospectus tone variables together show higher accuracy than models that use only quantitative variables. More specifically, the prediction accuracy was improved by 1.45% points in the Random Forest model, 4.34% points in the Artificial Neural Network model, and 5.07% points in the Support Vector Machine model. After testing the performance of these machine learning techniques, the Artificial Neural Network model using both quantitative variables and prospectus tone variables was the model with the highest prediction accuracy rate, which was 61.59%. The results indicate that the tone of a prospectus is a significant factor in predicting the price movement of an IPO stock. In addition, the McNemar test was used to verify the statistically significant difference between the models. The model using only quantitative variables and the model using both the quantitative variables and the prospectus tone variables were compared, and it was confirmed that the predictive performance improved significantly at a 1% significance level.