• Title/Summary/Keyword: levitation performance

검색결과 141건 처리시간 0.027초

자기부상열차의 부상제어 요구 성능을 고려한 시스템의 설계 (System Design Considering the required performance of the Levitation Control in Maglev)

  • 조정민;이종민;강병관;박성호;김철호;최종묵;김국진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1024-1031
    • /
    • 2008
  • The performance of magnetic levitation controller is affected from not only levitation control algorithm but also the interaction between compositing system, so it is important to design maglev system considering the character of magnetic levitation controller in order to get the required performance of Maglev. The factors affecting the levitation controller of maglev are the dynamics of levitation magnet, the carrying weight of the overall system, the normal force and lateral force of traction motor and rail condition. In this paper the interaction between magnet and vehicle weight is analysed on side of stability of levitation controller in order to get the required performance of levitation controller.

  • PDF

Output Improvement of a Magnetic Levitation Control System

  • Jung, Hae-Young;Na, Seung -You
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.59-70
    • /
    • 1995
  • Output performance improvement using fuzzy logic to the conventional control scheme for a magnetic levitation system is presented in this paper, Adverse characteristics of nonlinearity, unstability, system parameter variation, etc, in the levitation system are partially overcome by the general fuzzy control action. Using a PD type compensator, a coarse framework of output performance is provided to the levitation system. Then a fine regulation to the output performance requirement is obtained by the natural description of the control action in the form of fuzzy logic controller. This control action soothes the adverse characteristics of the levitation system. In this way a better output performance can be obtained in a real time experiment.

  • PDF

칼만필터를 이용한 부상시스템 관측기 설계에 관한 연구 (A study on the Observer Design of the Levitation System using Kalman Filter)

  • 조정민;한영재;이창영;이형우;강부병;이영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1191_1192
    • /
    • 2009
  • The objective of levitation control design is to stabilize a levitation system, or obtain certain transient response, bandwidth, and steady state error. An air gap signal from the each corner is important parameter to design levitation controller. A levitation controller using gap signals with measurement delay time can not make a expected performance. In this paper, a new air gap estimator to improve the performance of levitation controller is proposed. The estimated gap signal which has little measurement delay time is used as a feedback value in the levitation controller.

  • PDF

Development of Redundant Levitation and Guidance Control System of the Urban and Medium to High Speed Magnetic Levitation Train

  • Cho, Yeon-Hwa;Lee, Sun-Hee;Jang, Kyung-Hyun;Lee, Sang Suk;Lee, Kyoung-Bok;Park, Doh-Young
    • International Journal of Railway
    • /
    • 제8권1호
    • /
    • pp.21-29
    • /
    • 2015
  • This study focuses on the performance enhancement of the levitation and guidance control system in urban and medium-to high-speed magnetic levitation trains. A levitation control system, which is currently being tested in Yeongjongdo, is a single controller that is neither designed nor produced on the basis of redundancy. Hence, vehicular stability and reliability should be improved for the situation in which levitation failure occurs because of a breakdown in a controller during vehicle operation. In addition, the control system should be developed to control electromagnetic levitation considering changes in normal force according to changes in the driving force of the propulsion system.

부하 상태관측기에 의한 하이브리드 부상 시스템의 제로 파워 부상 제어 (Zero Power Levitation Control of Hybrid Electro-Magnetic Levitation System by Load Observer)

  • 김윤현;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권6호
    • /
    • pp.282-289
    • /
    • 2001
  • This paper introduces the scheme that improve the control performance of electromagnetic levitation system with zero power controller. Magnetic levitation is used widely, but the electromagnetic force has nonlinear characteristics because it is proportioned to a square of the magnetic flux density and it is in inverse proportion to a square of the airgap. So, it is complicate and difficult to control the electromagnetic force. Besides, it is more difficult to control if the equivalent gap is unknown in case of zero power control. Therefore, this paper proposed the hybrid electro-magnetic levitation control method in which the variable load is estimated by using a load observer and its system controlled at a new zero power equilibrium airgap position. Also it is confirmed that the proposed control method improve the control performance through simulation and experiment.

  • PDF

Design and Control of Levitation and Guidance Systems for a Semi-High-Speed Maglev Train

  • Kim, Min;Jeong, Jae-Hoon;Lim, Jaewon;Kim, Chang-Hyun;Won, Mooncheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.117-125
    • /
    • 2017
  • Research on Maglev (Magnetic Levitation) train is currently being conducted in Korea, concerning Urban Transit (110 km/h of maximum speed), semi-high-speed (200 km/h of maximum speed), and high-speed (550 km/h of maximum speed) trains. This paper presents a research study on the levitation and guidance systems for the Korean semi-high-speed maglev train. A levitation electromagnet was designed, and the need for a separate guidance system was analyzed. A guidance electromagnet to control the lateral displacement of the train and ensure its stable operation was then also designed, and its characteristics were analyzed. The dynamic performance of the designed levitation and guidance electromagnets was modeled and analyzed, using a linearized modeling of the system equations of motion. Lastly, a test setup was prepared, including manufactured prototypes of the designed system, and the validity of the design was verified and examined with performance evaluation tests.

최소차원 확장형 상태관측기에 의한 제어형 영구자석 자기 부상 시스템의 제로전력 부상 제어 (Zero Power Levitation Control of Controlled-PM Electromagnet Levitation System by Reduced Order Extended State Observer)

  • 김윤현;김솔;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권9호
    • /
    • pp.515-521
    • /
    • 2002
  • This paper presents the scheme that improves control responsibility and stability of the controlled-PM electromagnet levitation system with zero Power controller. A magnetically levitation system is used widely because friction can almost be disappeared. But it is difficult to control due to restraint of controllable area and nonlinear characteristics of electromagnetic force, which is proportioned to a square of the magnetic flux density and is in inverse proportion to a square of the air-gap. So, the application of observer theory in which the levitation system is considered to be a linear dynamic model has resulted in omitting the time dependence on mover's speed. Consequently, the performance of the observer is quite poor during transients. Therefore, this paper proposed the controlled-PM electro-magnetic levitation control method in which the variable load is estimated by using the reduced order extended luenverger observer and its system is controlled at a new zero power equilibrium air-gap position. It is also verified that the proposed control method improve the control performance through simulation and experiment.

병렬 퍼지-PID 제어기를 이용한 자기부상 제어 (Magnetic Levitation Control Using The Parallel Fuzzy Controller)

  • 김명건;김종문;최영규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.352-354
    • /
    • 2004
  • In this paper, a parallel fuzzy controller for one degree of freedom magnetic levitation is designed and its performance is compared with the performance of a PID controller. Input, output scaling factor of fuzzy controller and gain of PID controller were tuned using the GA algorithm. The designed controllers are validated by numerical simulations. So it's shown that parallel fuzzy controller can give the better performance for the plant than PID controller.

  • PDF

자기부상시스템을 위한 교수-학습 최적화 알고리즘 기반의 퍼지 PID 제어기 설계 (Design of TLBO-based Optimal Fuzzy PID Controller for Magnetic Levitation System)

  • 조재훈;김용태
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.701-708
    • /
    • 2017
  • This paper proposes an optimum design method using Teaching-Learning-based optimization for the fuzzy PID controller of Magnetic levitation rail-guided vehicle. Since an attraction-type levitation system is intrinsically unstable, it is difficult to completely satisfy the desired performance through the conventional control methods. In the paper, a fuzzy PID controller with fixed parameters is applied and then the optimum parameters of fuzzy PID controller are selected by Teaching-Learning optimization. For the fitness function of Teaching-Learning optimization, the performance index of PID controller is used. To verify the performances of the proposed method, we use a Maglev model and compare the proposed method with the performance of PID controller. The simulation results show that the proposed method is more effective than conventional PID controller.

이산형 칼만필터를 이용한 자기부상시스템의 공극외란 감쇄 (Air-gap Disturbance Attenuation of Magnetic Levitation Systems using Discrete Kalman Filter)

  • 성호경;정병수;장석명
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권7호
    • /
    • pp.444-451
    • /
    • 2004
  • Conventional magnetic levitation systems could show unsatisfactory performance under air-gap disturbance due to rail irregularities. In this paper, we propose a feedback control system with discrete Kalman filter for air-gap disturbance attenuation. It is shown that excellent system performance can be obtained with the use of discrete Kalman filter, and that results from experiments agree well with those of simulations.