• Title/Summary/Keyword: levelized generation cost

Search Result 33, Processing Time 0.019 seconds

Assessment of Energy Self-sufficiency Ratio Based on Renewable Market Potentials for Unit of Local Government (기초지방자치단체별 보급 가능한 재생에너지 시장잠재량을 이용한 에너지 자립률 평가)

  • Kim, Jin-Young;Kang, Yong-Heack;Cho, Sangmin;Yun, Changyeol;Kim, Chang Ki;Kim, Ha-Yang;Lee, Seung Moon;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.137-151
    • /
    • 2019
  • This study estimated the available renewable market potential based on Levelized Cost Of Electricity and then assessed the renewable derived energy self-sufficiency for the unit of local government in South Korea. To calculate energy self-sufficiency, 1 km gridded market renewable generation and local government scale of final energy consumption data were used based on the market costs and statistics for the recent three years. The results showed that the estimated renewable market potentials were 689 TWh (Install capacity 829 GW, 128 Mtoe), which can cover 120% of power consumption. 55% of municipalities can fully replace the existing energy consumption with renewable energy generation and the surplus generation can compensate for the rest area through electricity trade. However, it was confirmed that, currently, 47% of the local governments do not fully consider all renewable energy sources such as wind, hydro and geothermal in establishing 100% renewable energy. The results of this study suggest that energy planning is decentralized, and this will greatly contribute to the establishment of power planning of local governments and close the information gap between the central government, the local governments, and the public.

An Economic Evaluation by a Scoring Model in the Nuclear Power Plants under Uncertainty (원전에서 점수산정모형에 의한 경제성 평가)

  • 강영식;함효준
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.311-322
    • /
    • 1999
  • Major problems involved in an electrical utility expansion planning within a time horizon are how to efficiently deal with objectives considering multiple factors and uncertainty. But justification factors in study these days have considered only quantitative factors except qualitative factors. Therefore, the purpose of this paper is to develop a new model for economic evaluation of nuclear power plants through the scoring model with the quantitative and qualitative factors under uncertainty. The quantitative factors use a levelized generation cost method considering time value of money. Especially, the environmental, risk, and safety factors in this paper have been also explained for the rational economic justification of the qualitative factors under uncertainty. This paper not only proposes a new approach method using the scoring model in evaluating economy of the nuclear power plant in the long term, but also provides the more efficient decision making criterion for nuclear power plants under uncertainty.

  • PDF

Techno-economic Analysis of Power to Gas (P2G) Process for the Development of Optimum Business Model: Part 1 Methane Production

  • Roy, Partho Sarothi;Yoo, Young Don;Kim, Suhyun;Park, Chan Seung
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.182-192
    • /
    • 2022
  • This study provides an overview of the production costs of methane and hydrogen via water electrolysis-based hydrogen production followed by a methanation based methane production technology utilizing CO2 from external sources. The study shows a comparative way for economic optimization of green methane generation using excess free electricity from renewable sources. The study initially developed the overall process on the Aspen Plus simulation tool. Aspen Plus estimated the capital expenditure for most of the equipment except for the methanation reactor and electrolyzer. The capital expenditure, the operating expenditure and the feed cost were used in a discounted cash flow based economic model for the methane production cost estimation. The study compared different reactor configurations as well. The same model was also used for a hydrogen production cost estimation. The optimized economic model estimated a methane production cost of $11.22/mcf when the plant is operating for 4000 hr/year and electricity is available for zero cost. Furthermore, a hydrogen production cost of $2.45/GJ was obtained. A sensitivity analysis was performed for the methane production cost as the electrolyzer cost varies across different electrolyzer types. A sensitivity study was also performed for the changing electricity cost, the number of operation hours per year and the plant capacity. The estimated levelized cost of methane (LCOM) in this study was less than or comparable with the existing studies available in the literature.

Techno-economic Analysis of Power To Gas (P2G) Process for the Development of Optimum Business Model: Part 2 Methane to Electricity Production Pathway

  • Partho Sarothi Roy;Young Don Yoo;Suhyun Kim;Chan Seung Park
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • This study shows the summary of the economic performance of excess electricity conversion to hydrogen as well as methane and returned conversion to electricity using a fuel cell. The methane production process has been examined in a previous study. Here, this study focuses on the conversion of methane to electricity. As a part of this study, capital expenditure (CAPEX) is estimated under various sized plants (0.3, 3, 9, and 30 MW). The study shows a method for economic optimization of electricity generation using a fuel cell. The CAPEX and operating expenditure (OPEX) as well as the feed cost are used to calculate the discounted cash flow. Then the levelized cost of returned electricity (LCORE) is estimated from the discounted cash flow. This study found the LCORE value was ¢10.2/kWh electricity when a 9 MW electricity generating fuel cell was used. A methane production plant size of 1,500 Nm3/hr, a methane production cost of $11.47/mcf, a storage cost of $1/mcf, and a fuel cell efficiency of 54% were used as a baseline. A sensitivity analysis was performed by varying the storage cost, fuel cell efficiency, and excess electricity cost by ±20%, and fuel cell efficiency was found as the most dominating parameter in terms of the LCORE sensitivity. Therefore, for the best cost-performance, fuel cell manufacturing and efficiency need to be carefully evaluated. This study provides a general guideline for cost performance comparison with LCORE.

Economic Evaluation of ESS and Natural Gas Generator for Expansion of New and Renewable Generation (신재생발전 확대적용을 위한 ESS와 천연가스발전기의 경제성 평가)

  • JOO, YONGJIN;SHIN, JUGON;SEO, DONGKYUN;PARK, SEIK
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.363-369
    • /
    • 2018
  • This paper considers the alternative way to mitigate cost for REC instead of Photovoltaic (PV) panels with Energy Storage System (ESS). This study starts from an economic analysis of a 1 megawatt PV system without ESS. Several assumptions have been applied in consideration of the current domestic situation. Based on this result, the economic efficiency of PV with ESS improved. However, the reliance on government subsidies was very high. The alternative way to cover the fluctuation power from renewable energy was reviewed with economical and technical way. In case the natural gas engine applied to PV, the IRR and Levelized Cost of Electricity (LCOE) can be improved without ESS. And if small amount of additional REC, the IRR can be improved up to investment level.

Development of a Numerical Analysis Model for Heating and Power Generation System Combining a Cattle Manure Solid Fuel Combustion Boiler and the Organic Rankine Cycle (우분 고체연료 연소 보일러와 유기랭킨사이클을 결합한 난방 및 발전 시스템의 수치해석 모델 개발)

  • Donghwan Shin;Hyeongwon Lee;Hoon Jung;Joonyoung Choi;Jongyoung Jo
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.61-71
    • /
    • 2023
  • The necessity of energy utilization using livestock manure has been proposed with the decrease in domestic agricultural land. Livestock manure solid fuel has been investigated as a promising energy resource owing to its convenient storage and use in agricultural and livestock fields. Additional electricity production is possible through the integration of a biomass combustion boiler with the organic Rankine cycle (ORC). In this study, a mathematical system model of the cattle manure solid fuel boiler integrated with the ORC was developed to analyze the components' performance under variable operating conditions. A sensitivity analysis was conducted to confirm the electrical efficiency of the ORC turbine and the applicability of this system. The minimum required waste heat recovery rate was derived considering the system marginal price and levelized cost of electricity of the ORC. The simulation results showed that, in Korea, more than 77.98% of waste heat recovery and utilization in ORC turbines is required to achieve economic feasibility through ORC application.

Korean Nuclear Reactor Strategy for the Early 21st Century -A Techno-Economic and Constraints Comparison- (21세기 차세대 한국형 원자로 전략 -기술경제 제약요인 비교-)

  • Lee, Byong-Whi;Shin, Young-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.20-29
    • /
    • 1991
  • The system analysis for Korean nuclear power reactor option is made on the basis of reliability, cost minimization, finite uranium resource availability and nuclear engineering manpower supply constraints. The reference reactor scenarios are developed considering the future electricity demand, nuclear share, current nuclear power plant standardization program and manufacturing capacity. The levelized power generation cost, uranium requirement and nuclear engineering professionals demand are estimated for each reference reactor scenarios and nuclear fuel cycle options from the year 1990 up to the year 2030. Based on the outcomes of the analysis, uranium resource utilization, reliability and nuclear engineering manpower requirements are sensitive to the nuclear reactor strategy and associated fuel cycle whereas the system cost is not. APWR, CANDU longrightarrow FBR strategy is to be the best option for Korea. However, APWR, CANDU longrightarrow Passive Safe Reactor(PSR)longrightarrowFBR strategy should be also considered as a contingency for growing national concerns on nuclear safety and public acceptance deterioration in the future. FBR development and establishment of related fuel cycle should be started as soon as possible considering the uranium shortage anticipated between 2007 and 2032. It should be noted that the increasing use of nuclear energy to minimize the greenhouse effects in the early 21st century would accelerate the uranium resource depletion. The study also concludes that the current level of nuclear engineering professionals employment is not sufficient until 2010 for the establishment of nuclear infrastructure.

  • PDF

Power Cost Analysis of Go-ri Nuclear Power Plant Units 1 and 2

  • Chung, Chang-Hyun;Kim, Chang-Hyo;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.101-116
    • /
    • 1976
  • An attempt is made to analyze the unit nuclear power cost of the Go-ri units 1 and 2 in terms of a set of model data. For the calculational purpose, the power cost is first decomposed into the cost components related to the plant capital, operation and maintenance, working capital requirements, and fuel cycle operation. Then, POWERCO-50 computer code is applied to enumerate the first three components and MITCOST-II is used to evaluate the fuel cycle cost component. The specific numerical results are the fuel cycle cost of Go-ri unit 2 for three alternative fuel cycles presumed, levelized unit power cost of units 1 and 2, and the sensitivity of the power cost to the fluctuation of the model data. Upon comparision of the results with the power cost of the fossil power plants in Korea, it is found that the nuclear power is economically preferred to the fossil power. Nevertheless, the turnkey contract value of Go-ri unit 2 appears to be rather expensive compared with the available data on the construction cost of the PWR plants. Therefore, it is suggested that, in order to make the nuclear power plants more attractive in Korea, the unfavorable contract of such kind must be avoided in the future introduction of the nuclear power plant. Capacity factor is of prime importance to achieving the economic generation of the nuclear electricity from the Go-ri plant. Therefore, it is concluded that more efforts should be directed to make the maximum use of the Go-ri plant.

  • PDF

An Economic Feasibility Study of Wind-Diesel Hybrid Power Systems for an Island in the Yellow Sea (서해 도서지역의 풍력-디젤 하이브리드 발전에 대한 경제성 분석)

  • Lee, Tak-Kee;Nam, Yong-Yun;Kim, Jae-Dong;Han, Jeong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.5
    • /
    • pp.381-385
    • /
    • 2011
  • In this paper, an economic feasibility study of wind-diesel hybrid power systems for an island in the Yellow Sea, where the maximum power generation is about 500kW, was performed. For the study, annual electric load variation and wind resource data of the island were collected and analyzed. HOMER program - a typical hybrid optimization model for electric renewables including wind resource, developed by the National Renewable Energy Laboratory - was used. Wind speed and diesel price were picked out as variables for the sensitivity analysis in order to find the economic accountability for the wind-diesel hybrid power system. As the result, even though it is not feasible economically under the present condition, if mean wind speed is over 3 m/sec. or diesel price goes up to 2.4 $ per liter, the wind-diesel hybrid power system for the island becomes a prospective candidate.

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).