• Title/Summary/Keyword: leveling

Search Result 572, Processing Time 0.029 seconds

A Study on the Wall and Reservoir at the Valley Part of Stone Fortress - Focused on the Fortress of $Geoyeol-seong$ and $Seongsan-seong$ - (석축 산성의 계곡부 체성과 못(池)에 관한 연구 - 거창 거열성과 함안 성산산성을 중심으로 -)

  • Kwon, Soon-Kang;Lee, Ho-Yeol;Park, Un-Jung
    • Journal of architectural history
    • /
    • v.20 no.3
    • /
    • pp.7-22
    • /
    • 2011
  • With the accumulations of outcomes from archaeological excavations of mountain fortress of three kingdoms period, there have been studies about time-periodic territory range of mountain fortress, difference in the way(method) of construction, defence system and so on from various points of view. This is an empirical study on the construction method of the valley part of stone fortress. First of all, it is required to secure large quantity of fresh water for those who lived at mountain fortress. Especially when builders of fortress construct a fortification at the valley part of stone fortress, in advance they must sufficiently consider several options including the establishment of sustainable water resources. First, when it comes to build a fortification on a ridge[or a slope] of a mountain, you have only to consider a vertical stress. However, when it comes to build a fortification at the valley part of a mountain, You must have more sufficient preparations for the constructing process. Because there are not only a vertical stress but also a horizontal pressure simultaneously. Second, a fortification of mountain fortress built by using unit building stone is a structure of masonry construction like brick construction, and the valley part of it is where the construction of the fortification begins. Third, when it comes to build a fortification at the valley part of a mountain, it seems that they use a temporary method such as coffer dam in oder to prevent the collapse of the fortification due to heavy rain. Furthermore, in response to a horizontal pressure a fortification is built by the way of its plane make an arch, or by piling up the soil with the plate method(類似版築) and earthen wall harder method(敷葉) they increase cross-sectional area of the fortification and its cutoff capacity. In front direction they put the reservoir facility for the fear that the hydraulic pressure and earth pressure are directly transmitted to the fortification. The process of constructing the fortification at the valley part of a mountain is done in the same oder as follows; leveling of ground(整地) ${\Rightarrow}$ construction of coffer dam ${\Rightarrow}$ construction of the fortification between the both banks of the valley ${\Rightarrow}$ construction of the fortification at bottom part of spill way(餘水路) between the both banks of the valley ${\Rightarrow}$ construction of spill way(餘水路) & reservoir facility ${\Rightarrow}$ construction of the fortification at upper part of spill way between the both banks of the valley. Coffer dam facility seems to be not only the protection device on occasion of flood but also an important criterion to measure the proper height of spill way or tailrace(放水路). This study has a meaningful significance in that it empirically examines the method of reduction of the horizontal pressure which the fortification at the valley part of a mountain takes, the date the construction was done, and wether the changes in climate such as heavy rainfall influence the process of construction.

Physico-chemical Properties of Disturbed Plastic Film House Soils under Cucumber and Grape Cultivation as Affected by Artificial Accumulation History

  • Han, Kyung-Hwa;Ibrahim, Muhammad;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Hur, Seung-Oh;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.105-118
    • /
    • 2015
  • This study was carried out to investigate the effects of profile disturbance with different artificial accumulation history on physico-chemical properties of soil under plastic film house. The investigations included soil profile description using soil column cylinder auger F10cm x h110cm, in situ and laboratory measurements of soil properties at five sites each at the cucumber (Site Ic ~ Vc) and grape (Site Ig ~ Vg) plastic film houses with artificial soil accumulation. The sites except sites Ic, IVc, IVg and Vg, belong to ex-paddy area. The types of accumulates around root zone included sandy loam soil for 3 sites, loam soil for 1 site, saprolite for 2 sites, and multi-layer with different accumulates for 3 sites. Especially, Site IIg has mixed plow zone (Ap horizon) with original soil and saprolite, whereas disturbed soil layers of the other sites are composed of only external accumulates. The soil depth disturbed by artificial accumulation ranged from 20 cm, for Site IIg, to whole measured depth of 110 cm, for Site IVc, Vc, and Site IVg. Elapsed time from artificially accumulation to investigation time ranged from 3 months, Site IIc, to more than 20 years, Site Vg, paddy-soil covering over well-drained upland soil during land leveling in 1980s. Disturbed top layer in all sites except Site Vg had no structure, indicating low structural stability. In situ infiltration rate had no correlation with texture or organic matter content, but highest value with highest variability in Site IIIc, the shortest elapsed time since sandy loam soil accumulation. Relatively low infiltration rate was observed in sites accumulated by saprolite with coarse texture, presumably because its low structural stability in the way of weathering process could result in relatively high compaction in agro-machine work or irrigation. In all cucumber sites, there were water-transport limited zone with very low permeable or impermeability within 50 cm under soil surface, but Site IIg, IIIg, and Vg, with relatively weak disturbance or structured soil, were the reverse. We observed the big change in texture and re-increase of organic matter content, available phosphate, and exchangeable cations between disturbed layer and original soil layer. This study, therefore, suggest that the accumulation of coarse material such as saprolite for cultivating cash crop under plastic film house might not improve soil drainage and structural stability, inversely showing weaker disturbance of original soil profile with higher drainage.

A Novel Task Scheduling Algorithm Based on Critical Nodes for Distributed Heterogeneous Computing System (분산 이기종 컴퓨팅 시스템에서 임계노드를 고려한 태스크 스케줄링 알고리즘)

  • Kim, Hojoong;Song, Inseong;Jeong, Yong Su;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.116-126
    • /
    • 2015
  • In a distributed heterogeneous computing system, the performance of a parallel application greatly depends on its task scheduling algorithm. Therefore, in order to improve the performance, it is essential to consider some factors that can have effect on the performance of the parallel application in a given environment. One of the most important factors that affects the total execution time is a critical path. In this paper, we propose the CLTS algorithm for a task scheduling. The CLTS sets the priorities of all nodes to improve overall performance by applying leveling method to improve parallelism of task execution and by reducing the delay caused by waiting for execution of critical nodes in priority phase. After that, it conditionally uses insertion based policy or duplication based policy in processor allocation phase to reduce total schedule time. To evaluate the performance of the CLTS, we compared the CLTS with the DCPD and the HCPFD in our simulation. The results of the simulations show that the CLTS is better than the HCPFD by 7.29% and the DCPD by 8.93%. with respect to the average SLR, and also better than the HCPFD by 9.21% and the DCPD by 7.66% with respect to the average speedup.

The Implementable Functions of the CoreNet of a Multi-Valued Single Neuron Network (단층 코어넷 다단입력 인공신경망회로의 함수에 관한 구현가능 연구)

  • Park, Jong Joon
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.593-602
    • /
    • 2014
  • One of the purposes of an artificial neural netowrk(ANNet) is to implement the largest number of functions as possible with the smallest number of nodes and layers. This paper presents a CoreNet which has a multi-leveled input value and a multi-leveled output value with a 2-layered ANNet, which is the basic structure of an ANNet. I have suggested an equation for calculating the capacity of the CoreNet, which has a p-leveled input and a q-leveled output, as $a_{p,q}={\frac{1}{2}}p(p-1)q^2-{\frac{1}{2}}(p-2)(3p-1)q+(p-1)(p-2)$. I've applied this CoreNet into the simulation model 1(5)-1(6), which has 5 levels of an input and 6 levels of an output with no hidden layers. The simulation result of this model gives, the maximum 219 convergences for the number of implementable functions using the cot(${\sqrt{x}}$) input leveling method. I have also shown that, the 27 functions are implementable by the calculation of weight values(w, ${\theta}$) with the multi-threshold lines in the weight space, which are diverged in the simulation results. Therefore the 246 functions are implementable in the 1(5)-1(6) model, and this coincides with the value from the above eqution $a_{5,6}(=246)$. I also show the implementable function numbering method in the weight space.

Engineering Characteristics of Liquid Filler Using Marine Clay and In-situ Soil (해양점토와 현장토를 활용한 유동성 채움재의 공학적 특성)

  • Oh, Sewook;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.25-32
    • /
    • 2020
  • The underground utilities installed under the ground is an important civil engineering structure, such as water supply and sewerage pipes, underground power lines, various communication lines, and city gas pipes. Such underground utilities can be exposed to risk due to external factors such as concentrated rainfall and vehicle load, and it is important to select and construct an appropriate backfill material. Currently, a method mainly used is to fill the soil around the underground utilities and compact it. But it is difficult to compact the lower part of the buried pipe and the compaction efficiency decreases, reducing the stability of the underground utilities and causing various damages. In addition, there are disadvantages such as a decrease in ground strength due to disturbance of the ground, a complicated construction process, and construction costs increase because the construction period becomes longer, and civil complaints due to traffic restrictions. One way to solve this problem is to use a liquid filler. The liquid filler has advantages such as self-leveling ability, self-compaction, fluidity, artificial strength control, and low strength that can be re-excavated for maintenance. In this study, uniaxial compression strength test and fluidity test were performed to characterize the mixed soil using marine clay, stabilizer, and in-situ soil as backfill material. A freezing-thawing test was performed to understand the strength characteristics of the liquid filler by freezing, and in order to examine the effect of the filling materials on the corrosion of the underground pipe, an electrical resistivity test and a pH test were performed.

DEVELOPMENT OF A PERSIMMON HARVESTING SYSTEM

  • Kim, S. M.;Park, S. J.;Kim, C. S.;Kim, M. H.;Lee, C. H.;J. Y. Rhee
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.472-479
    • /
    • 2000
  • A persimmon harvesting vehicle that can be operated in hilly orchards as well as a manipulator that can be used to harvest persimmons located in remote positions in the trees were designed and developed. The vehicle could be operated with keeping balanced position in an inclined field and its working platform could be moved up and down easy to approach fruits in a remote region with the aids of a hydraulic and a electrical and electronics systems. The weight of the vehicle was 927 kg and the center of gravity was located at 427 mm to the inner side from the center of a right driving caterpillar, 607 mm to a rear axle from the center of a front axle, and 562 mm to upward from ground. The automatic level control sensor for leveling the working platform was activated within 14.5 ∼ 16.5 degrees of slope variation. The total length of the manipulator was 1.39 m and weight is 975 g. It was powered by a 12 V geared motor to detach persimmon fruits with a rotational force. The gripper was made of plastic and rubber to increase a frictional force. In a performance evaluation test, static tipping angle, dynamic tipping angle toward front side when the vehicle was moving downward, climbing angle, driving speed of the vehicle were measured or calculated. In persimmon harvesting tests 24.9% of yield was increased by hand picking with the aid of the vehicle and additional 7% of yield were increased when the manipulator was used. Therefore, 99010 of total possible yield was achievable when both of the vehicle and the manipulator were used for the manual persimmon harvesting. Increase in 22.5% of total yield was achieved with the manipulator only.

  • PDF

Mechanical Properties of a High-temperature Superconductor Bearing Rotor in a 10 kWh Class Superconductor Flywheel Energy Storage System (10 kWh급 초전도 베어링 회전자의 기계적 특성 평가)

  • Park, B.J.;Jung, S.Y.;Kim, C.H.;Han, S.C.;Park, B.C.;Han, S.J.;Doo, S.G.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • Recently, superconductor flywheel energy storage systems (SFESs) have been developed for application to a regenerative power of train, a power quality improvement, the storage of distributed power sources such as solar and wind power, and a load leveling. As the high temperature superconductor (HTS) bearings offer dynamic stability without the use of active control, accurate analysis of the HTS bearing is very important for application to SFESs. Mechanical property of a HTS bearing is the main index for evaluating the capacity of an HTS bearing and is determined by the interaction between the HTS bulks and the permanent magnet (PM) rotor. HTS bearing rotor consists of PM and iron collector and the proper dimension design of them is very important to determine a supporting characteristics. In this study, we have optimized a rotor magnet array, which depends on the limited bulk size and performed various dimension layouts for thickness of the pole pitch and iron collector. HTS bearing rotor was installed into a single axis universal test machine for a stiffness test. A hydraulic pump was used to control the amplitude and frequency of the rotor vibration. As a result, the stiffness result showed a large difference more than 30 % according to the thickness of permanent magnet and iron collector. This is closely related to the bulk stiffness controlled by flux pining area, which is limited by the total bulk dimension. Finally, the optimized HTS bearing rotor was installed into a flywheel system for a dynamic stability test. We discussed the dynamic properties of the superconductor bearing rotor and these results can be used for the optimal design of HTS bearings of the 10kWh SFESs.

Study on the Improvement of Land Clearing Methods by Bulldozer & Fertilization of Cleared Soil (불도우저에 의한 개간 공법의 개선과 숙지화에 관한 연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3627-3641
    • /
    • 1975
  • The Government is trying to increase total food grain yield to meet national self sufficiency by means of increasing unit yield as well as extending crop land, and this year he set the target of 321,000 hectare of forest to clear for cropping. This study was carried to investigate the most efficient method of clearing hillock by bulldozer, and successful method to develope yielding potential of newly cleared land in short term. Since the conventional land clearing method is just earth leveling and root removing neglecting top soil treatment, the growth of crop was poor and farmer tends not to care the land. The top-soil-furrowing method is applied through out this study, that is advantageous especially for the land having shallow top soil and low fertility like Korean forest. In this study, various operating method were tried to find out most efficient method separately in connection with the land slope less than 25 percent and over, and several fertilizing methods to develop yielding potential. The results are as follows; 1) For the natural land slope utilization method, applicable to the land having less than 25 percent slope, reverse operating was more efficient than using forward gear of bulldozer. The operating time was 3 hour 32 minutes and 36 seconds using forward gear was 2 hour 32 minutes and 30 seconds for reverse gear operation per 1,000 square meter. 2) Bulldozer having angle blade adjustment needed 7hr 15min. for constructing of terrace per 10a compaire with the one having angle & tilt adjustment needed 6hr 4min for same operations. Specially there is significant difference for operation time of first period (earth cutting) such as bulldozer having angle blade adjustment needed 3hr 56min compaired with the one having angle & tilt adjustment 3hr 59min. In construction of terrace, the bull-dozer having tilting and angle blade adjustment was most suitable and performed efficiently. 3) For the fertilizer application treatment, the grass (Ladino clover) yield in first year was almost same as ordinary field's in the plot applied(N.P.K+lime+manure) while none fertilizer plot showed one tenth of it, and (N.P.K.+lime) applied plot yielded on third. 4) The effect of different land clearing method to yield showed significant difference between each treatment especially in the first year, and the conventional method was the lowest. In the second year, still conventional terracing plot yielded only half of ordinary field while the other plots showed as same as ordinary field's. 5) The downward top soil treatment plot showed most rapid improvement in soil structure during one year physio chemically, it showed increase in pH rate and organic composition, and the soil changed gradually from loam to sand-loam and the moisture content increased against the pF rate, and it gives good condition to grow hay due to the increase of field water capacity with higher available water content. 6) Since the soil of tested area was granite, the rate of soil errosion was increased about 2 to 5 percent influencing in soil structure more sand reducing clay content, and an optimum contour farming method should be prepared as a counter measure of errosion.

  • PDF

Effects of Split Application of SCB Liquid Fertilizer on Rice Yield and Soil Chemical Property in Honam Plain Field (호남평야지에서 SCB 액비 분시가 쌀 수량과 토양 화학성에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Yang, Chang-Hu;Oh, Young-Jin;Park, Tai-Il;Kim, Kee-Jong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.140-145
    • /
    • 2011
  • In order to establish the application method of slurry composting & biofilteration liquid fertilizer (SCB LF) in rice cultivation, experiments were studied on split application method of it and effects of it on soil chemical properties and rice yields. Land leveling by rotary tillage within 2 days after application of SCB LF, $NH_4$-N concentration in soil was maintained uniformly in all paddy field. Initial concentrations of $NH_4$-N and $NO_3$-N in soil were high at standard fertilization and 100% application of SCB LF as basal fertilization, however, after tillering stage they maintained similar concentrations in all experimental plots. $NO_3$-N content in infiltration water was slightly lower at 70% application of SCB LF as basal fertilization and 30% application of SCB LF as fertilization at panicle initiation stage than at standard fertilization. Yields of rice by split application of SCB LF were lower at 100% application of SCB LF as basal fertilization, however, those of the other application of SCB LF were similar with that of standard fertilization. In case of rice quality, perfect kernel rates were high and protein contents were lower at non-application and 100% application of SCB LF. Rice quality of 70% application of SCB LF as basal fertilization and 30% application of SCB LF as fertilization at panicle initiation stage were similar with that of standard fertilization.

Deformation Characteristics of Underground Pipe with In-situ Soil CLSM (현장발생토 CLSM을 이용한 지하매설관의 변형특성)

  • 박재헌;이관호;조재윤;김석남
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.129-139
    • /
    • 2004
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the small-scaled model test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM.. From the model test in the lab, it was found out that the use of CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the gound surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was smaller than those in the other cases, and the absolute value was almost zero. Judging from the small-scaled model test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing failure of the underground pipes.