• 제목/요약/키워드: level-shifting

검색결과 174건 처리시간 0.02초

2-step Phase-shifting Digital Holographic Optical Encryption and Error Analysis

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • 제15권3호
    • /
    • pp.244-251
    • /
    • 2011
  • We propose a new 2-step phase-shifting digital holographic optical encryption technique and analyze tolerance error for this cipher system. 2-step phase-shifting digital holograms are acquired by moving the PZT mirror with phase step of 0 or ${\pi}$/2 in the reference beam path of the Mach-Zehnder type interferometer. Digital hologram with the encrypted information is Fourier transform hologram and is recorded on CCD camera with 256 gray-level quantized intensities. The decryption performance of binary bit data and image data is analyzed by considering error factors. One of the most important errors is quantization error in detecting the digital hologram intensity on CCD. The more the number of quantization error pixels and the variation of gray-level increase, the more the number of error bits increases for decryption. Computer experiments show the results to be carried out encryption and decryption with the proposed method and the graph to analyze the tolerance of the quantization error in the system.

Shifting-Level Process에 기반한 영상트래픽 모델 (1부: 모델링과 대기체계 영향 분석) (A Video Traffic Model based on the Shifting-Level Process (Part I : Modeling and the Effects of SRD and LRD on Queueing Behavior))

  • 안희준;강상혁;김재균
    • 한국통신학회논문지
    • /
    • 제24권10B호
    • /
    • pp.1971-1978
    • /
    • 1999
  • 본 논문에서는‘shifting-level (SL) process’을 기초로 한 모델을 사용하여, VBR 부호화된 영상트래픽의 long-range dependence (LRD) 특성이 대기체계에 미치는 영향에 대해서 연구하였다. 연구 내용은 제1부와 제2부로 나누어 전개된다. 제 1부에서는 실제 영상트래픽의 자기상관함수가 exponential과 hyperbolic의 복합함수로 매우 정확히 표현될 수 있음을 보이고, 이러한 조건을 만족하는 SL process with compound correlations(SLCC)를 제안한다. 대표적인 SRD 모델인 DAR(1)모델과의 대기성능 비교를 통하여 hyperbolic한 상관도가 대기체계에 끼치는 영향을 분석한다. 분석결과 영상의 LRD 특성이 대기체계에 끼치는 영향의 중요도는 단순히‘Yes/No’로 답할 수 없으며, 트래픽 부하가 높아지면 그 영향이 강하게 나타나고, 반대로 트래픽 부하가 낮은 경우에는 무시할 수 있을 정도로 약하게 나타남을 알 수 있다. 여기에 사용하는 SL/D/1/K 대기체계의 해석방법을 제2부에서 다루게 된다.

  • PDF

QPSK Modulation Based Optical Image Cryptosystem Using Phase-shifting Digital Holography

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • 제14권2호
    • /
    • pp.97-103
    • /
    • 2010
  • We propose a new technique for the optical encryption of gray-level optical images digitized into 8-bits binary data by ASCII encoding followed by QPSK modulation. We made an encrypted digital hologram with a security key by using 2-step phase-shifting digital holography, and the encrypted digital hologram is recorded on a CCD camera with 256 gray-level quantized intensities. With these encrypted digital holograms, the phase values are reconstructed by the same security key and are decrypted into the original gray-level optical image by demodulation and decoding. Simulation results show that the proposed method can be used for cryptosystems and security systems.

디지털망에서의 4-step 위상 천이 간섭계를 이용한 이진 데이터의 쌍방향 광 암호화 및 전송 (Bi-directional encryption and transmission of binary data with 4-step phase-shifting interferometry in digital network)

  • 이현진;길상근;전석희;김남
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2006년도 동계학술발표회 논문집
    • /
    • pp.135-136
    • /
    • 2006
  • We present a new binary data encryption and transmission technique based on 4-step phase-shifting interferometry for a security system. Phase-shifting interferometry is used for recording phase and amplitude information on CCD device. 4-step phase-shifting is implemented by moving the PZT mirror with equidistant phase steps of ${\pi}/2$. The basic idea is that we reuse a 256 gray-level digital hologram to encrypt binary data with 4-step phase-shifting interferometry.

  • PDF

Secret-key-sharing Cryptosystem Using Optical Phase-shifting Digital Holography

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • 제3권2호
    • /
    • pp.119-127
    • /
    • 2019
  • A new secret-key-sharing cryptosystem using optical phase-shifting digital holography is proposed. The proposed secret-key-sharing algorithm is based on the Diffie-Hellman key-exchange protocol, which is modified to an optical cipher system implemented by a two-step quadrature phase-shifting digital holographic encryption method using orthogonal polarization. Two unknown users' private keys are encrypted by two-step phase-shifting digital holography and are changed into three digital-hologram ciphers, which are stored by computer and are opened to a public communication network for secret-key-sharing. Two-step phase-shifting digital holograms are acquired by applying a phase step of 0 or ${\pi}/2$ in the reference beam's path. The encrypted digital hologram in the optical setup is a Fourier-transform hologram, and is recorded on CCDs with 256 quantized gray-level intensities. The digital hologram shows an analog-type noise-like randomized cipher with a two-dimensional array, which has a stronger security level than conventional electronic cryptography, due to the complexity of optical encryption, and protects against the possibility of a replay attack. Decryption with three encrypted digital holograms generates the same shared secret key for each user. Schematically, the proposed optical configuration has the advantage of producing a kind of double-key encryption, which can enhance security strength compared to the conventional Diffie-Hellman key-exchange protocol. Another advantage of the proposed secret-key-sharing cryptosystem is that it is free to change each user's private key in generating the public keys at any time. The proposed method is very effective cryptography when applied to a secret-key-exchange cryptosystem with high security strength.

Error Analysis for Optical Security by means of 4-Step Phase-Shifting Digital Holography

  • Lee, Hyun-Jin;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • 제10권3호
    • /
    • pp.118-123
    • /
    • 2006
  • We present an optical security method for binary data information by using 4-step phase-shifting digital holography and we analyze tolerance error for the decrypted data. 4-step phase-shifting digital holograms are acquired by moving the PZT mirror with equidistant phase steps of ${\pi}/2$ in the Mach-Zender type interferometer. The digital hologram in this method is a Fourier transform hologram and is quantized with 256 gray level. The decryption performance of the binary data information is analyzed. One of the most important errors is the quantization error in detecting the hologram intensity on CCD. The greater the number of quantization error pixels and the variation of gray level increase, the more the number of error bits increases for decryption. Computer experiments show the results for encryption and decryption with the proposed method and show the graph to analyze the tolerance of the quantization error in the system.

Shifting-Level Process에 기반한 영상트래픽 모델(2부: SL/D/1/K 대기체계 분석 방법) (A Video Traffic Model based on the Shifting-Level Process (Part II : An Efficient Analysis Method for SL/D/1/K Queueing System))

  • 안희준;김재균
    • 한국통신학회논문지
    • /
    • 제24권10B호
    • /
    • pp.1979-1985
    • /
    • 1999
  • 본 논문에서는 [1]에서 제안된 shifting-level (SL) process를 입력으로 하는 대기체계인 SL/D/1/K에 대한 분석방법을 제시한다. SL/D/1/K 대기체계의 분석은, 상태전이 시점사이가 exponential 분포를 따르지 않고, 시스템의 크기가 연속적인 값을 취하기 때문에, 정확한 분석이 매우 어렵다. ‘양자화 축소 방식’(quantization reduction method)은, 입력의 상태전이 시점에서 시스템상태를 양자화하는 방식으로 셀손실과, 대기지연시간 등의 시스템 성능에 대한 근사치를 제시한다. 더욱이, 제안되는 방식에서는 단기 시스템성능의 근사치를 제공하는 것에 그치지 않고 상한치와 하한치를 함께 제공함으로서, 양자화에 따르는 오차의 정도를 예측 할 수 있게 하였다. 실험결과, 데이터 양이 많고 상관도가 높은 영상 트래픽에 적용하였을 때, 1% 내외의 정확도를 유지하면서도, 계산에 필요한 행렬의 크기를 1/100이하로 줄일 수 있었다.

  • PDF

Reversible Data Hiding Scheme Based on Maximum Histogram Gap of Image Blocks

  • Arabzadeh, Mohammad;Rahimi, Mohammad Reza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권8호
    • /
    • pp.1964-1981
    • /
    • 2012
  • In this paper a reversible data hiding scheme based on histogram shifting of host image blocks is presented. This method attempts to use full available capacity for data embedding by dividing the image into non-overlapping blocks. Applying histogram shifting to each block requires that extra information to be saved as overhead data for each block. This extra information (overhead or bookkeeping information) is used in order to extract payload and recover the block to its original state. A method to eliminate the need for this extra information is also introduced. This method uses maximum gap that exists between histogram bins for finding the value of pixels that was used for embedding in sender side. Experimental results show that the proposed method provides higher embedding capacity than the original reversible data hiding based on histogram shifting method and its improved versions in the current literature while it maintains the quality of marked image at an acceptable level.

Dual Optical Encryption for Binary Data and Secret Key Using Phase-shifting Digital Holography

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • 제16권3호
    • /
    • pp.263-269
    • /
    • 2012
  • In this paper, we propose a new dual optical encryption method for binary data and secret key based on 2-step phase-shifting digital holography for a cryptographic system. Schematically, the proposed optical setup contains two Mach-Zehnder type interferometers. The inner interferometer is used for encrypting the secret key with the common key, while the outer interferometer is used for encrypting the binary data with the same secret key. 2-step phase-shifting digital holograms, which result in the encrypted data, are acquired by moving the PZT mirror with phase step of 0 or ${\pi}/2$ in the reference beam path of the Mach-Zehnder type interferometer. The digital hologram with the encrypted information is a Fourier transform hologram and is recorded on CCD with 256 gray level quantized intensities. Computer experiments show the results to be encryption and decryption carried out with the proposed method. The decryption of binary secret key image and data image is performed successfully.

Low Power and Small Area Holding Latch with Level Shifting Function Using LTPS TFTs for Mobile Applications

  • Choi, Jung-Hwan;Kim, Yong-Jae;Ahn, Soon-Sung;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1283-1286
    • /
    • 2006
  • A holding latch with level shifting function is proposed for power and cost effectiveness with low temperature polycrystalline silicon technology on the glass backplane. Layout area and power consumption of the proposed circuit are reduced by 10% and 52% compared with those of the typical structure which combines a static D-latch and a cross coupled level shifter for 2.2" qVGA panel, respectively.

  • PDF