• Title/Summary/Keyword: levees

Search Result 113, Processing Time 0.025 seconds

Experimental Study of Collapse Delay Effect of Riprap on Dam Slope (사력댐 사석 보호공의 붕괴 지연 효과에 대한 실험 연구)

  • Jeong, Seokil;Kim, Seung Wook;Kim, Hong Taek;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • The 99.1% of small dam and most of the levees in Korea are soil dam which can be constructed with lower cost and less effort compared with ones made of concrete. However, they are so vulnerable to overflow. Sudden collapses of these strucrues lead to increase flow rate rapidly, which may cause catastrophic problems in downstream regions. In this study, the experimental study on the collapse delay effect of riprap that was laid on slope of soil levee was carried out. A prismatic rectangular open channel was used and three different sizes of the riprap were installed on slope of a scaled earth dam. A new formula for the collapse time of the levee with the installation of riprap was presented, using the previous researches and the dimensional analysis. In this process, an unsteady flow condition was considered to derive the deviation time of the riprap. And additional experiments were conducted to understand the effect of reinforcement of riprap, and it was found that the reinforcement of riprap was more effective than twice sizing of intial riprap. If the collapse time is delayed, EAP (Emergency Action Plan) and forecasting can greatly reduce the degree of flood damage. Also, it will be meaningful that the results of this study are used for river design.

A Study on the Interpretalion of the Synthetic Unit Hydrograph According to the Characteristics of catchment Area and Runoff Routing (유역 특성과 유출추적에 의한 단위도 해석에 관한 고찰)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.1
    • /
    • pp.1088-1096
    • /
    • 1966
  • The following is a method of synthetic unitgraph derivation based on the routing of a time area diagram through channel storage, studied by Clark-Jonstone and Laurenson. Unithy drograph (or unitgraph) is the hydrograph that would result from unit rainfall\ulcorner excess occuring uniformly with respect to both time and area over a catchment in unit time. By thus standarzing rainfall characteristics and ignoring loss, the unitgraph represents only the effects of catchment characteristics on the time distribution of runoff from a catchment The situation abten arises where it is desirable to derive a unitgraph for the design of dams, large bridge, and flood mitigation works such as levees, floodways and other flood control structures, and are also used in flood forecasting, and the necessary hydrologie records are not available. In such cases, if time and funds permit, it may be desirable to install the necessary raingauges, pruviometers, and stream gaging stations, and collect the necessary data over a period of years. On the otherhand, this procedure may be found either uneconomic or impossible on the grounds of time required, and it then becomes necessary to synthesise a unitgraph from a knowledge of the physical charcteristics of the catchment. In the preparing the approach to the solution of the problem we must select a number of catchment characteristic(shape, stream pattern, surface slope, and stream slope, etc.), a number of parameters that will define the magnitude and shape of the unit graph (e.g. peak discharge, time to peak, and base length, etc.), evaluate the catch-ment characteristics and unitgraph parameters selected, for a number of catchments having adequate rainfall and stream data and obtain Correlations between the two classes of data, and assume the relationships derived in just above question apply to other, ungaged, Catchments in the same region and, knowing the physical characteritics of these catchments, substitute for them in the relation\ulcorner ships to determine the corresponding unitgraph parameters. This method described in this note, based on the routing of a time area diagram through channel storage, appears to provide a logical line of research and they allow a readier correlation of unitgraph parameters with catchment characteristics. The main disadvantage of this method appears to be the error in routing all elements of rainfall excess through the same amount of storage. evertheless, it should be noted that the synthetic unitgraph method is more accurate than the rational method since it takes account of the shape and tophography of the catchment, channel storage, and temporal variation of rainfall excess, all of which are neglected in rational method.

  • PDF

Development and application of urban flood alert criteria considering damage records and runoff characteristics (피해이력 및 유역특성을 고려한 도시침수 위험기준 설정 및 적용)

  • Cho, Jeawoong;Bae, Changyeon;Kang, Hoseon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Recently, localized heavy rainfall has led to increasing flood damage in urban areas such as Gangnam, Seoul ('12), Busan ('13), Ulsan ('16) Incheon and Busan ('17) etc. Urban flooding occurs relatively rapidly compared to flood damage in river basin, and property damage including damage to houses, cars and shopping centers is more serious than facility damage to structures such as levees and small bridges. In Korea, heavy rain warnings are currently announced using the criteria set by KMA (Korea Meteorological Administration). However, these criteria do not reflect regional characteristics and are not suitable to urban flood. So in this study, estimated the flooding limit rainfall amount based on the damage records for Seoul and Ulsan. And for regions that can not estimate the flooding limit rainfall since there is no damage records, we estimated the flooding limit rainfall using a Neuro-Fuzzy model with runoff characteristics. Based on the estimated flooding limit rainfall, the urban flood warning criteria was set. and applied to the actual flood event. As a result of comparing the estimated flooding limit rainfall with the actual flooding limit rainfall, the error of 1.8~20.4% occurred. And evacuation time was analyzed from a minimum of 28 minutes to a maximum of 70 minutes. Therefore, it can be used as a warning criteria in the urban flood.

Suitability Analysis of Numerical Models Related to Seepage through a Levee (제방 침투 수치해석 모형의 적합성 분석)

  • Im, Dong-Kyun;Yeo, Hong-Koo;Kim, Kyu-Ho;Kang, Jun-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.241-252
    • /
    • 2006
  • Numerical models for seepage analysis are useful tools to analyze problems and design protection techniques that are related to seepage through a levee. Though every model may have its own limitations and shortcomings, there were no generalized verifications or calibrations for the commercial models. It means that users can run the model and get the result without understanding nor taking any enough training. This paper Investigates applicability and suitability of some seepage numerical models by comparing analytical solutions with experiments in the user's viewpoint. The results showed that it is more desirable to use analyses with unsaturated-unsteady condition rather than those with saturated-steady conditions, since seepage phenomenon of real levees are changed according to water level and soil property. This study also compared the calculated unsteady solutions with the calculated steady solutions for the levee at Koa of the Nakdong River The comparison revealed that as the result, the safety factor of $2.0{\sim}3.5$ has the same effects for seepage protection techniques when they are designed on the basis of steady-state analysis.

Distribution of Habitats and Ecology of Weedy Melons (Cucumis melo var. agrestis Naud.) in Korea (우리나라 야생잡초 참외의 자생지 분포지역 및 생태)

  • Lee, Woo-Sung
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.652-655
    • /
    • 2013
  • Natural habitats of weedy melons were distributed on the islands along and on the west and south coasts of Korean peninsula including Boryeong, Seosan (Taean), Seocheon, Okgu, Buan, Gochang, Yeonggwang, Muan, Shinan, Haenam, Jindo, Wando, Goheung, Yeocheon, Hadong, Namhae, Goseong, Tongyeong, Geoje, and Jeju islands including Jeju city, Bukjeju-gun and Nam Jeju-gun. Weedy melons were found growing wildly in or around the cultivated lands in these regions. Natural habitats of weedy melons were in and around the cultivated lands. Weedy melon plants were found most often in soybean fields, followed by fields of mungbean, sweet potato, pepper, sesame, cotton, and peanuts. The plants were also found growing wild in foxtail millet fields, rice paddy levees along the streams, upland field edges, watermelon fields, corn fields, vegetable gardens near farmhouse, orange fields, compost piles, fallow fields, roadside and home gardens. They inhabited in sunny and a little dry spaces in relatively low-height crop plant fields in general. The time of fruit maturity was from early July to late October with the most frequency in September according to post survey answer. Fruits dropped off from the fruit stalk when matured. This phenomenon was thought beneficial for perpetuation in the wild. The fruits were being used commonly for food and toys for children. It was thought that weedy melons were perpetuating through the cycle of human and animal feeding of the fruits, human and animal droppings, often mixed in compost, and application of the compost to crop fields by human.

Development of a Framework of Emergency Action Plan for Domestic Water Front Critical Infrastructure (국내 주요 수변시설물 EAP 프레임워크 개발)

  • Park, Su-Yeul;Choi, Soo-Young;Oh, Eun-Ho;Kim, Jin-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.125-134
    • /
    • 2017
  • Unusual precipitation caused by typhoons and severe rain stormscan threaten human life and property. Thus, various organizations prepare emergency action plans (EAPs) to provide proper guidelines for operators, experts, and emergency response personnel to protect and enhance critical infrastructure. For example, FEMA and DHS have various types of EAPs for dams, levees, and other structures to protect people and property. FEMA defines EAPs as official documents to decrease the damage and impact in emergency situations and to reduce casualties. These documents should consider all possible situations in an emergency and can reduce problems in facility management. This study analyzes EAPs for infrastructure from the USA, Japan, and Korea in order to suggest an ideal EAP framework. EAPcontent can include how to guide experts and operators in disaster stages (mitigation, preparedness, response, and recovery), how to operate emergency equipment, and how to protect critical infrastructure and life. The suggested EAP framework performed very well in a test location. It can therefore be used for infrastructure organizations in Korea and to inform of the appropriate processes and methods for risk reduction in flood disasters.

Xanthan Gum Reduces Aluminum Toxicity in Camelina Roots (잔탄검 혼합에 따른 카멜리나 뿌리의 알루미늄 독성 경감 효과)

  • Shin, Jung-Ho;Kim, Hyun-Sung;Kim, Sehee;Kim, Eunsuk;Jang, Ha-young;Ahn, Sung-Ju
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.3
    • /
    • pp.135-142
    • /
    • 2021
  • Biopolymers have been known as eco-friendly soil strengthening materials and studied to apply levees. However, the effect of biopolymer on vegetation is not fully understood. In this study, we analyzed the root growth of Camelina sativa L. (Camelina) when the xanthan gum was amended to soil in Aluminum (Al) stress conditions. Amendment of 0.05% xanthan gum increased root growth of Camelina under Al stress conditions. Under the Al stress condition, expression of aluminum activate malate transporter 1 (ALMT1) gene of Camelina root was induced but showed a lower level of expression in xanthan gum amended soil than non-amended soil. Additionally, the binding capacity of xanthan gum with Al ions in the solution was confirmed. Using morin staining and ICP-OES analysis, the Al content of the roots in the xanthan gum soil was lower than in the non-xanthan gum soil. These results suggest that xanthan gum amended soils may reduce the detrimental effects of Al on the roots and positively affect the growth of plants. Therefore, xanthan gum is not only an eco-friendly construction material but also can protect the roots in the disadvantageous environment of the plant.

Sensitivity analysis of flood vulnerability index of levee according to climate change (기후변화에 따른 제방의 홍수취약성지수 민감도 분석)

  • Lee, Hoo Sang;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1161-1169
    • /
    • 2018
  • In this study, a new methodology was proposed to evaluate the flood vulnerability of river levee and to investigate the effect on the levee where the water level changes according to climate change. The stability of levee against seepage was evaluated using SEEP/W model which is two-dimensional groundwater infiltration model. In addition to the infiltration behavior, it is necessary to analyze the vulnerability of the embankment considering the environmental conditions of the river due to climate change. In this study, the levee flood vulnerability index (LFVI) was newly developed by deriving the factors necessary for the analysis of the levee vulnerability. The size of river levee was investigated by selecting the target area. The selected levees were classified into upstream part, midstream part and downstream part at the nearside of Seoul in the Han river, and the safety factor of the levee was analyzed by applying the design flood level of the levee. The safety ratio of the levee was analyzed by applying the design flood level considering the current flood level and the scenario of climate change RCP8.5. The degree of change resulting from climate change was identified for each factor that forms the levee flood vulnerability index. By using the levee flood vulnerability index value utilizing these factors comprehensively, it was finally possible to estimate the vulnerability of levee due to climate change.

Quantitive Evaluation of Reproducibility of Embankment for Full Scale Test through Statistical Analysis of Physical Properties of Soil (지반물성치 통계분석을 통한 실규모 시험용 제방축조의 재현성에 관한 정량적 평가)

  • Lee, Heemin;Moon, Junho;Kim, Minjin;Kim, Younguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.6
    • /
    • pp.19-23
    • /
    • 2022
  • For the substantiation and verification of studies related to the construction of a levee using riverbed soil, real-scale levee construction and experimental studies are essential. One of the most important factors in the experimental study is the reproducibility of the multiple levees with the same initial conditions. Quantitative analysis of the reproducibility should be presented. In this study, a number of physical properties (specific gravity test, sieving test, liquid-plastic limit test, compaction test, on-site Density test) for multiple embankments built with fine-grained bed soil was obtained. The collected data then used to obtain the possibility of reproducing levee through statistical analysis to suggest a process of indicating a numeric initial condition of the real-scale test. As a result of statistical analysis to verify the aforementioned process, it was confirmed that it was possible to quantitatively evaluate the reproducibility of the construction under the same conditions of embankments. This is expected to be a basic data for a full-scale embankment test using riverbed soil including other soil based real-scale tests.

Real-time flood prediction applying random forest regression model in urban areas (랜덤포레스트 회귀모형을 적용한 도시지역에서의 실시간 침수 예측)

  • Kim, Hyun Il;Lee, Yeon Su;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1119-1130
    • /
    • 2021
  • Urban flooding caused by localized heavy rainfall with unstable climate is constantly occurring, but a system that can predict spatial flood information with weather forecast has not been prepared yet. The worst flood situation in urban area can be occurred with difficulties of structural measures such as river levees, discharge capacity of urban sewage, storage basin of storm water, and pump facilities. However, identifying in advance the spatial flood information can have a decisive effect on minimizing flood damage. Therefore, this study presents a methodology that can predict the urban flood map in real-time by using rainfall data of the Korea Meteorological Administration (KMA), the results of two-dimensional flood analysis and random forest (RF) regression model. The Ujeong district in Ulsan metropolitan city, which the flood is frequently occurred, was selected for the study area. The RF regression model predicted the flood map corresponding to the 50 mm, 80 mm, and 110 mm rainfall events with 6-hours duration. And, the predicted results showed 63%, 80%, and 67% goodness of fit compared to the results of two-dimensional flood analysis model. It is judged that the suggested results of this study can be utilized as basic data for evacuation and response to urban flooding that occurs suddenly.