• 제목/요약/키워드: length parameter

검색결과 1,418건 처리시간 0.038초

A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Yeghnem, Redha;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.89-102
    • /
    • 2018
  • This work investigates a novel plate formulation and a modified couple stress theory that introduces a variable length scale parameter is presented to discuss the static and dynamic of functionally graded (FG) micro-plates. A new type of third-order shear deformation theory of Reddy that use only 4 unknowns by including undetermined integral variables is proposed in this study. The equations of motion are derived from Hamilton's principle. Analytical solutions are obtained for a simply supported micro-plate. Numerical examples are presented to examine the effect of the length scale parameter on the responses of micro-plates. The obtained results are compared with the previously published results to demonstrate the correctness of the present formulation.

Accurate RF C-V Method to Extract Effective Channel Length and Parasitic Capacitance of Deep-Submicron LDD MOSFETs

  • Lee, Sangjun;Lee, Seonghearn
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권6호
    • /
    • pp.653-657
    • /
    • 2015
  • A new paired gate-source voltage RF capacitance-voltage (C-V) method of extracting the effective channel length and parasitic capacitance using the intersection between two closely spaced linear regression lines of the gate capacitance versus gate length measured from S-parameters is proposed to remove errors from conventional C-V methods. Physically verified results are obtained at the gate-source voltage range where the slope of the gate capacitance versus gate-source voltage is maximized in the inversion region. The accuracy of this method is demonstrated by finding extracted value corresponding to the metallurgical channel length.

A comprehensive analysis of horizontally polarized shear waves in a thin microstructural plate

  • Vikas Sharma;Satish Kumar
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.501-510
    • /
    • 2023
  • Horizontally polarized shear waves (SH) have numerous applications in various scientific, engineering, and medical fields. The study deals with an investigation of SH-waves in a thin microstructural plate. The plate has been mathematically modelled by employing size dependent consistent couple stress theory, which involves a length parameter, known as characteristic length. Characteristic length is assumed to be of the order of internal microstructures of the material. Dispersion relations have been calculated for the propagation of SH-waves using different set of boundary conditions. Group velocity of the SH-waves has been calculated by using an analytical approach. The mathematical results obtained in the problem are discussed in detail and the impacts of characteristic length parameter and thickness of plate are presented on phase velocity of SH-waves through graphical illustrations.

Development of Cleavage Fracture Toughness Locus Considering Constraint Effects

  • Chang, Yoon-Suk;Kim, Young-Jin;Ludwig Stumpfrock
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2158-2173
    • /
    • 2004
  • In this paper, the higher order terms in the crack tip stress fields are investigated macroscopically for more realistic assessment of structural material behaviors. For reactor pressure vessel material of A533B ferritic steel, effects of crack size and temperature have been evaluated using 3-point SENB specimens through a series of finite element analyses, tensile tests and fracture toughness tests. The T-stress, Q-parameter and q-parameter as well as the K and J-integral are calculated and mutual relationships are investigated also. Based on the evaluation, it has proven that the effect of crack size from standard length (a/W=0.53) to shallow length (a/W=0.11) is remarkable whilst the effect of temperature from -20$^{\circ}C$ to -60$^{\circ}C$ is negligible. Finally, the cleavage fracture toughness loci as a function of the promising Q-parameter or q-parameter are developed using specific test results as well as finite element analysis results, which can be applicable for structural integrity evaluation considering constraint effects.

Fluctuating lift and drag acting on a 5:1 rectangular cylinder in various turbulent flows

  • Yang, Yang;Li, Mingshui;Yang, Xiongwei
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.137-149
    • /
    • 2022
  • In this paper, the fluctuating lift and drag forces on 5:1 rectangular cylinders with two different geometric scales in three turbulent flow-fields are investigated. The study is particularly focused on understanding the influence of the ratio of turbulence integral length scale to structure characteristic dimension (the length scale ratio). The results show that both fluctuating lift and drag forces are influenced by the length scale ratio. For the model with the larger length scale ratio, the corresponding fluctuating force coefficient is larger, while the spanwise correlation is weaker. However, the degree of influence of the length scale ratio on the two fluctuating forces are different. Compared to the fluctuating drag, the fluctuating lift is more sensitive to the variation of the length scale ratio. It is also found through spectral analysis that for the fluctuating lift, the change of length scale ratio mainly leads to the variation in the low frequency part of the loading, while the fluctuating drag generally follows the quasi-steady theory in the low frequency, and the slope of the drag spectrum at high frequencies changes with the length scale ratio. Then based on the experimental data, two empirical formulas considering the influence of length scale ratio are proposed for determining the lift and drag aerodynamic admittances of a 5:1 rectangular cylinder. Furthermore, a simple relationship is established to correlate the turbulence parameter with the fluctuating force coefficient, which could be used to predict the fluctuating force on a 5:1 rectangular cylinder under different parameter conditions.

단일 비전에서 칼만 필티와 차선 검출 필터를 이용한 모빌 로봇 주행 위치.자세 계측 제어에 관한 연구 (A Study on Measurement and Control of position and pose of Mobile Robot using Ka13nan Filter and using lane detecting filter in monocular Vision)

  • 이용구;송현승;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.81-81
    • /
    • 2000
  • We use camera to apply human vision system in measurement. To do that, we need to know about camera parameters. The camera parameters are consisted of internal parameters and external parameters. we can fix scale factor&focal length in internal parameters, we can acquire external parameters. And we want to use these parameters in automatically driven vehicle by using camera. When we observe an camera parameters in respect with that the external parameters are important parameters. We can acquire external parameter as fixing focal length&scale factor. To get lane coordinate in image, we propose a lane detection filter. After searching lanes, we can seek vanishing point. And then y-axis seek y-sxis rotation component(${\beta}$). By using these parameter, we can find x-axis translation component(Xo). Before we make stepping motor rotate to be y-axis rotation component(${\beta}$), '0', we estimate image coordinates of lane at (t+1). Using this point, we apply this system to Kalman filter. And then we calculate to new parameters whick make minimum error.

  • PDF

Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory

  • Park, Weon-Tae;Han, Sung-Cheon;Jung, Woo-Young;Lee, Won-Hong
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1239-1259
    • /
    • 2016
  • The modified couple stress-based third-order shear deformation theory is presented for sigmoid functionally graded materials (S-FGM) plates. The advantage of the modified couple stress theory is the involvement of only one material length scale parameter which causes to create symmetric couple stress tensor and to use it more easily. Analytical solution for dynamic instability analysis of S-FGM plates on elastic medium is investigated. The present models contain two-constituent material variation through the plate thickness. The equations of motion are derived from Hamilton's energy principle. The governing equations are then written in the form of Mathieu-Hill equations and then Bolotin's method is employed to determine the instability regions. The boundaries of the instability regions are represented in the dynamic load and excitation frequency plane. It is assumed that the elastic medium is modeled as Pasternak elastic medium. The effects of static and dynamic load, power law index, material length scale parameter, side-to-thickness ratio, and elastic medium parameter have been discussed. The width of the instability region for an S-FGM plate decreases with the decrease of material length scale parameter. The study is relevant to the dynamic simulation of micro structures embedded in elastic medium subjected to intense compression and tension.

Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter

  • Aydogdu, Metin;Arda, Mustafa;Filiz, Seckin
    • Advances in nano research
    • /
    • 제6권3호
    • /
    • pp.257-278
    • /
    • 2018
  • Vibration of axially functionally graded nano-rods and beams is investigated. It is assumed that the material properties change along the rod and beam length. The Ritz method with algebraic polynomials is used in the formulation of the problems. Stress gradient elasticity theory is utilized in order to include the nonlocal effects. Frequencies are obtained for different boundary conditions, geometrical and material properties. Nonlocal parameter is assumed as changing linearly or quadratically along the length of the nanostructure. Frequencies are compared to constant nonlocal parameter cases and considerable differences are observed between constant and variable nonlocal parameter cases. Mode shapes in various cases are depicted in order to explain the effects of axial grading.

Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.27-56
    • /
    • 2020
  • In this paper, the deflection and buckling analyses of porous nano-composite piezoelectric plate reinforced by carbon nanotube (CNT) are studied. The equations of equilibrium using energy method are derived from principle of minimum total potential energy. In the research, the non-local strain gradient theory is employed to consider size dependent effect for porous nanocomposite piezoelectric plate. The effects of material length scale parameter, Eringen's nonlocal parameter, porosity coefficient and aspect ratio on the deflection and critical buckling load are investigated. The results indicate that the effect of porosity coefficient on the increase of the deflection and critical buckling load is greatly higher than the other parameters effect, and size effect including nonlocal parameter and the material length scale parameter have a lower effect on the deflection increase with respect to the porosity coefficient, respectively and vice versa for critical buckling load. Porous nanocomposites are used in various engineering fields such as aerospace, medical industries and water refinery.

동적파라미터 변동을 고려한 윈치 및 부하 운동제어시스템설계에 관한 연구 (A study on winch and load motion control system design considering dynamic parameter variation)

  • 박환철;김영복
    • 수산해양기술연구
    • /
    • 제53권3호
    • /
    • pp.293-301
    • /
    • 2017
  • In this study, a winch and load motion control system design method is introduced. Especially, the winch and load (moving cart) are connected with long wire rope which is extended to few kilometers long. Therefore, the rope length changes such that many dynamic parameter values are changed as well by winding and releasing the rope from the winch system. In this paper, the authors designed the control system by considering the real time parameter variation to occupy and keep good control performance continuously. The effectiveness of introduced method was evaluated by simulation results.