References
- Adali, S. (2008), "Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory", Phys. Lett., Section A: General Atom. Solid State Phys., 372(35), 5701-5705. DOI: 10.1016/j.physleta.2008.07.003
- Adali, S. (2009), "Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal euler-bernoulli beam model", Nano Lett., 9(5), 1737-1741. DOI: 10.1021/nl8027087
- Adali, S. (2015), "Variational Principles for Vibrating Carbon Nanotubes Conveying Fluid, Based on the Nonlocal Beam Model", East Asian J. Appl. Math., 5(3), 209-221. DOI: 10.4208/eajam.130814.250515a
- Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. DOI: 10.1016/j.compstruct.2012.11.020
- Anandakumar, G. and Kim, J.H. (2010), "On the modal behavior of a three-dimensional functionally graded cantilever beam: Poisson's ratio and material sampling effects", Compos. Struct., 92(6), 1358-1371. DOI: 10.1016/j.compstruct.2009.11.020
- Aydogdu, M. (2008), "Semi-inverse method for vibration and buckling of axially functionally graded beams", J. Reinf. Plast. Compos., 27(7), 683-691. DOI: 10.1177/0731684407081369
- Aydogdu, M. (2009a), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E: Low-Dimen. Syst. Nanostruct., 41(9), 1651-1655. DOI: 10.1016/j.physe.2009.05.014
- Aydogdu, M. (2009b), "Axial vibration of the nanorods with the nonlocal continuum rod model", Phys. E: Low-Dimen. Syst. Nanostruct., 41(5), 861-864. DOI: 10.1016/j.physe.2009.01.007
- Aydogdu, M. and Filiz, S. (2011), "Vibration analysis of piecewise and continuously axially graded rods and beams", In: Galloway AL (ed.) Mechanical Vibrations: Types, Testing and Analysis, Nova Publishers, pp. 95-146
- Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., Int. J., 5(4), 393-414. DOI: 10.12989/anr.2017.5.4.393
- Berger, R., Kwon, P. and Dharan, C.K.H. (1994), "High speed centrifugal casting of metal matrix composites", Proceedings of the 5th International Symposium on Transport Phonomena and Dynamics of Rotating Machinery, Maui, HI, USA.
- Bharti, I., Gupta, N. and Gupta, K.M. (2013), "Novel Applications of Functionally Graded Nano, Optoelectronic and Thermoelectric Materials", Int. J. Mater. Mech. Manuf., 1(3), 221-224. DOI: 10.7763/IJMMM.2013.V1.47
- Ebrahimi, F. and Barati, M.R. (2017a), "Thermal-induced nonlocal vibration characteristics of heterogeneous beams", Adv. Mater. Res., Int. J., 6(2), 93-128. DOI: 10.12989/amr.2017.6.2.093
- Ebrahimi, F. and Barati, M.R. (2017b), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 095440621771351. DOI: 10.1177/0954406217713518
- Ebrahimi, F. and Barati, M.R. (2017c), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Thermal Stress., 40(5), 548-563. DOI: 10.1080/01495739.2016.1254076
- Ebrahimi, F. and Barati, M.R. (2017d), "Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory", Mech. Adv. Mater. Struct., 6494, 1-11. DOI: 10.1080/15376494.2017.1329467
- Ebrahimi, F. and Jafari, A. (2017), "Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory", Adv. Nano Res., Int. J., 5(4), 281-301. DOI:10.12989/anr.2017.5.4.281
- Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), "Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., Int. J., 6(3), 279-301. DOI:10.12989/amr.2017.6.3.279
- Ebrahimi, F., Barati, M.R. and Zenkour, A.M. (2018), "A new nonlocal elasticity theory with graded nonlocality for thermo-mechanical vibration of FG nanobeams via a nonlocal third-order shear deformation theory", Mech. Adv. Mater. Struct., 25(6), 512-522. DOI: 10.1080/15376494.2017.1285458
- Elishakoff, I. and Guede, Z. (2004), "Analytical polynomial solutions for vibrating axially graded beams", Mech. Adv. Mater. Struct., 11(6 II), 517-533. DOI: 10.1080/15376490490452669
- Elishakoff, I. and Johnson, V. (2005), "Apparently the first closed-form solution of vibrating inhomogeneous beam with a tip mass", J. Sound Vib., 286(4-5), 1057-1066. DOI: 10.1016/j.jsv.2005.01.050
- Eringen, A.C. (1976), "Part III - Nonlocal Polar Field Theories", Continuum Phys., 205-267.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. DOI: 10.1063/1.332803
- Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75(1-4), 593-600. DOI: 10.1016/j.compstruct.2006.04.018
- Fukui, Y. (1990), "Fundamental investigation of functionally gradient material manufacturing system using centrifugal force", Transact. Japan Soc. Mech. Eng. Series C, 56(521), 67-70. DOI: 10.1299/kikaic.56.67
- Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects", Compos. Part B: Eng., 52, 199-206. DOI: 10.1016/j.compositesb.2013.04.023
- Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. DOI: 10.1016/j.jmps.2008.08.010
- Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound Vib., 329(11), 2291-2303. DOI: 10.1016/j.jsv.2009.12.029
- Huang, Y., Yang, L.E. and Luo, Q.Z. (2013), "Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section", Compos. Part B: Eng., 45(1), 1493-1498. DOI: 10.1016/j.compositesb.2012.09.015
- Janghorban, M. and Zare, A. (2011), "Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method", Phys. E: Low-Dimen. Syst. Nanostruct., 43(9), 1602-1604. DOI: 10.1016/j.physe.2011.05.002
- Lambros, J., Narayanaswamy, A., Santare, M.H. and Anlas, G. (1999), "Manufacture and testing of a functionally graded material", J. Eng. Mater. Technol., 121(October), 488-493. DOI: 10.1115/1.2812406
- Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. DOI: 10.1016/j.compstruct.2017.01.032
- Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids Struct., 44(16), 5289-5300. DOI: 10.1016/j.ijsolstr.2006.12.034
- Moya, J.S. (1995), "Layered ceramics", Adv. Mater., 7(2), 185-189. DOI: 10.1002/adma.19950070219
- Nejad, M.Z. and Hadi, A. (2016), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. DOI: 10.1016/j.ijengsci.2016.04.011
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. DOI: 10.1016/S0020-7225(02)00210-0
- Qian, L.F. and Batra, R.C. (2005), "Design of bidirectional functionally graded plate for optimal natural frequencies", J. Sound Vib., 280(1-2), 415-424. DOI: 10.1016/j.jsv.2004.01.042
- Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B: Eng., 35(6-8), 685-697. DOI: 10.1016/j.compositesb.2004.02.004
- Robinson, M.T.A. and Adali, S. (2016), "Variational solution for buckling of nonlocal carbon nanotubes under uniformly and triangularly distributed axial loads", Compos. Struct. DOI: 10.1016/j.compstruct.2016.01.026
- Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015), "Dynamic instability analysis of electrostatic functionally graded doubly-clamped nano-actuators", Compos. Struct., 124, 55-64. DOI: 10.1016/j.compstruct.2015.01.004
- Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Part B: Eng., 42(4), 801-808. DOI: 10.1016/j.compositesb.2011.01.017
- Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Phys. E: Low-Dimen. Syst. Nanostruct., 83, 74-87. DOI: 10.1016/j.physe.2016.04.011
- Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. DOI: 10.1016/j.compstruct.2017.02.048
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. DOI: 10.1016/j.nucengdes.2009.12.013
- Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Computat. Mater. Sci., 61, 257-265. DOI: 10.1016/j.commatsci.2012.04.001
- Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281-7287. DOI: 10.1063/1.1625437
- Uymaz, B. and Aydogdu, M. (2007), "Three-dimensional vibration analyses of functionally graded plates under various boundary conditions", J. Reinf. Plast. Compos., 26(18), 1847-1863. DOI: 10.1177/0731684407081351
- Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. DOI: 10.1016/S0022-460X(03)00412-7
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. DOI: 10.1063/1.2141648
- Wu, L., Wang, Q.S. and Elishakoff, I. (2005), "Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode", J. Sound Vib., 284(3-5), 1190-1202. DOI: 10.1016/j.jsv.2004.08.038
- Yamanouchi, M., Koizumi, M., Hirai, T. and Shiota, I. (1990), "On the design of functionally gradient materials", Proceedings of the 1st International Symposium on Functionally Gradient Materials, pp. 5-10.
- Yang, J.E., Park, W.H., Kim, C.J., Kim, Z.H. and Jo, M.H. (2008), "Axially graded heteroepitaxy and Raman spectroscopic characterizations of Si1-xGex nanowires", Appl. Phys. Lett., 92(26), 3-6. DOI: 10.1063/1.2939564
Cited by
- Free Vibration Analysis of Variable Cross-Section Single-Layered Graphene Nano-Ribbons (SLGNRs) Using Differential Quadrature Method vol.4, pp.None, 2018, https://doi.org/10.3389/fbuil.2018.00063
- Vibration characteristics of nanobeam with exponentially varying flexural rigidity resting on linearly varying elastic foundation using differential quadrature method vol.6, pp.8, 2018, https://doi.org/10.1088/2053-1591/ab1f47
- Torsional dynamics of coaxial nanotubes with different lengths in viscoelastic medium vol.25, pp.10, 2018, https://doi.org/10.1007/s00542-019-04446-8
- Thermal stress and magnetic effects on nonlinear vibration of nanobeams embedded in nonlinear elastic medium vol.43, pp.10, 2018, https://doi.org/10.1080/01495739.2020.1780175