DOI QR코드

DOI QR Code

Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter

  • Aydogdu, Metin (Department of Mechanical Engineering, Trakya University) ;
  • Arda, Mustafa (Department of Mechanical Engineering, Trakya University) ;
  • Filiz, Seckin (Corlu Vocational School, Namik Kemal University)
  • Received : 2018.03.11
  • Accepted : 2018.09.18
  • Published : 2018.09.25

Abstract

Vibration of axially functionally graded nano-rods and beams is investigated. It is assumed that the material properties change along the rod and beam length. The Ritz method with algebraic polynomials is used in the formulation of the problems. Stress gradient elasticity theory is utilized in order to include the nonlocal effects. Frequencies are obtained for different boundary conditions, geometrical and material properties. Nonlocal parameter is assumed as changing linearly or quadratically along the length of the nanostructure. Frequencies are compared to constant nonlocal parameter cases and considerable differences are observed between constant and variable nonlocal parameter cases. Mode shapes in various cases are depicted in order to explain the effects of axial grading.

Keywords

References

  1. Adali, S. (2008), "Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory", Phys. Lett., Section A: General Atom. Solid State Phys., 372(35), 5701-5705. DOI: 10.1016/j.physleta.2008.07.003
  2. Adali, S. (2009), "Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal euler-bernoulli beam model", Nano Lett., 9(5), 1737-1741. DOI: 10.1021/nl8027087
  3. Adali, S. (2015), "Variational Principles for Vibrating Carbon Nanotubes Conveying Fluid, Based on the Nonlocal Beam Model", East Asian J. Appl. Math., 5(3), 209-221. DOI: 10.4208/eajam.130814.250515a
  4. Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. DOI: 10.1016/j.compstruct.2012.11.020
  5. Anandakumar, G. and Kim, J.H. (2010), "On the modal behavior of a three-dimensional functionally graded cantilever beam: Poisson's ratio and material sampling effects", Compos. Struct., 92(6), 1358-1371. DOI: 10.1016/j.compstruct.2009.11.020
  6. Aydogdu, M. (2008), "Semi-inverse method for vibration and buckling of axially functionally graded beams", J. Reinf. Plast. Compos., 27(7), 683-691. DOI: 10.1177/0731684407081369
  7. Aydogdu, M. (2009a), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E: Low-Dimen. Syst. Nanostruct., 41(9), 1651-1655. DOI: 10.1016/j.physe.2009.05.014
  8. Aydogdu, M. (2009b), "Axial vibration of the nanorods with the nonlocal continuum rod model", Phys. E: Low-Dimen. Syst. Nanostruct., 41(5), 861-864. DOI: 10.1016/j.physe.2009.01.007
  9. Aydogdu, M. and Filiz, S. (2011), "Vibration analysis of piecewise and continuously axially graded rods and beams", In: Galloway AL (ed.) Mechanical Vibrations: Types, Testing and Analysis, Nova Publishers, pp. 95-146
  10. Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., Int. J., 5(4), 393-414. DOI: 10.12989/anr.2017.5.4.393
  11. Berger, R., Kwon, P. and Dharan, C.K.H. (1994), "High speed centrifugal casting of metal matrix composites", Proceedings of the 5th International Symposium on Transport Phonomena and Dynamics of Rotating Machinery, Maui, HI, USA.
  12. Bharti, I., Gupta, N. and Gupta, K.M. (2013), "Novel Applications of Functionally Graded Nano, Optoelectronic and Thermoelectric Materials", Int. J. Mater. Mech. Manuf., 1(3), 221-224. DOI: 10.7763/IJMMM.2013.V1.47
  13. Ebrahimi, F. and Barati, M.R. (2017a), "Thermal-induced nonlocal vibration characteristics of heterogeneous beams", Adv. Mater. Res., Int. J., 6(2), 93-128. DOI: 10.12989/amr.2017.6.2.093
  14. Ebrahimi, F. and Barati, M.R. (2017b), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 095440621771351. DOI: 10.1177/0954406217713518
  15. Ebrahimi, F. and Barati, M.R. (2017c), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Thermal Stress., 40(5), 548-563. DOI: 10.1080/01495739.2016.1254076
  16. Ebrahimi, F. and Barati, M.R. (2017d), "Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory", Mech. Adv. Mater. Struct., 6494, 1-11. DOI: 10.1080/15376494.2017.1329467
  17. Ebrahimi, F. and Jafari, A. (2017), "Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory", Adv. Nano Res., Int. J., 5(4), 281-301. DOI:10.12989/anr.2017.5.4.281
  18. Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), "Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., Int. J., 6(3), 279-301. DOI:10.12989/amr.2017.6.3.279
  19. Ebrahimi, F., Barati, M.R. and Zenkour, A.M. (2018), "A new nonlocal elasticity theory with graded nonlocality for thermo-mechanical vibration of FG nanobeams via a nonlocal third-order shear deformation theory", Mech. Adv. Mater. Struct., 25(6), 512-522. DOI: 10.1080/15376494.2017.1285458
  20. Elishakoff, I. and Guede, Z. (2004), "Analytical polynomial solutions for vibrating axially graded beams", Mech. Adv. Mater. Struct., 11(6 II), 517-533. DOI: 10.1080/15376490490452669
  21. Elishakoff, I. and Johnson, V. (2005), "Apparently the first closed-form solution of vibrating inhomogeneous beam with a tip mass", J. Sound Vib., 286(4-5), 1057-1066. DOI: 10.1016/j.jsv.2005.01.050
  22. Eringen, A.C. (1976), "Part III - Nonlocal Polar Field Theories", Continuum Phys., 205-267.
  23. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. DOI: 10.1063/1.332803
  24. Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75(1-4), 593-600. DOI: 10.1016/j.compstruct.2006.04.018
  25. Fukui, Y. (1990), "Fundamental investigation of functionally gradient material manufacturing system using centrifugal force", Transact. Japan Soc. Mech. Eng. Series C, 56(521), 67-70. DOI: 10.1299/kikaic.56.67
  26. Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects", Compos. Part B: Eng., 52, 199-206. DOI: 10.1016/j.compositesb.2013.04.023
  27. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. DOI: 10.1016/j.jmps.2008.08.010
  28. Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound Vib., 329(11), 2291-2303. DOI: 10.1016/j.jsv.2009.12.029
  29. Huang, Y., Yang, L.E. and Luo, Q.Z. (2013), "Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section", Compos. Part B: Eng., 45(1), 1493-1498. DOI: 10.1016/j.compositesb.2012.09.015
  30. Janghorban, M. and Zare, A. (2011), "Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method", Phys. E: Low-Dimen. Syst. Nanostruct., 43(9), 1602-1604. DOI: 10.1016/j.physe.2011.05.002
  31. Lambros, J., Narayanaswamy, A., Santare, M.H. and Anlas, G. (1999), "Manufacture and testing of a functionally graded material", J. Eng. Mater. Technol., 121(October), 488-493. DOI: 10.1115/1.2812406
  32. Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. DOI: 10.1016/j.compstruct.2017.01.032
  33. Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids Struct., 44(16), 5289-5300. DOI: 10.1016/j.ijsolstr.2006.12.034
  34. Moya, J.S. (1995), "Layered ceramics", Adv. Mater., 7(2), 185-189. DOI: 10.1002/adma.19950070219
  35. Nejad, M.Z. and Hadi, A. (2016), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. DOI: 10.1016/j.ijengsci.2016.04.011
  36. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. DOI: 10.1016/S0020-7225(02)00210-0
  37. Qian, L.F. and Batra, R.C. (2005), "Design of bidirectional functionally graded plate for optimal natural frequencies", J. Sound Vib., 280(1-2), 415-424. DOI: 10.1016/j.jsv.2004.01.042
  38. Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B: Eng., 35(6-8), 685-697. DOI: 10.1016/j.compositesb.2004.02.004
  39. Robinson, M.T.A. and Adali, S. (2016), "Variational solution for buckling of nonlocal carbon nanotubes under uniformly and triangularly distributed axial loads", Compos. Struct. DOI: 10.1016/j.compstruct.2016.01.026
  40. Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015), "Dynamic instability analysis of electrostatic functionally graded doubly-clamped nano-actuators", Compos. Struct., 124, 55-64. DOI: 10.1016/j.compstruct.2015.01.004
  41. Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Part B: Eng., 42(4), 801-808. DOI: 10.1016/j.compositesb.2011.01.017
  42. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Phys. E: Low-Dimen. Syst. Nanostruct., 83, 74-87. DOI: 10.1016/j.physe.2016.04.011
  43. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. DOI: 10.1016/j.compstruct.2017.02.048
  44. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. DOI: 10.1016/j.nucengdes.2009.12.013
  45. Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Computat. Mater. Sci., 61, 257-265. DOI: 10.1016/j.commatsci.2012.04.001
  46. Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281-7287. DOI: 10.1063/1.1625437
  47. Uymaz, B. and Aydogdu, M. (2007), "Three-dimensional vibration analyses of functionally graded plates under various boundary conditions", J. Reinf. Plast. Compos., 26(18), 1847-1863. DOI: 10.1177/0731684407081351
  48. Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. DOI: 10.1016/S0022-460X(03)00412-7
  49. Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. DOI: 10.1063/1.2141648
  50. Wu, L., Wang, Q.S. and Elishakoff, I. (2005), "Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode", J. Sound Vib., 284(3-5), 1190-1202. DOI: 10.1016/j.jsv.2004.08.038
  51. Yamanouchi, M., Koizumi, M., Hirai, T. and Shiota, I. (1990), "On the design of functionally gradient materials", Proceedings of the 1st International Symposium on Functionally Gradient Materials, pp. 5-10.
  52. Yang, J.E., Park, W.H., Kim, C.J., Kim, Z.H. and Jo, M.H. (2008), "Axially graded heteroepitaxy and Raman spectroscopic characterizations of Si1-xGex nanowires", Appl. Phys. Lett., 92(26), 3-6. DOI: 10.1063/1.2939564

Cited by

  1. Free Vibration Analysis of Variable Cross-Section Single-Layered Graphene Nano-Ribbons (SLGNRs) Using Differential Quadrature Method vol.4, pp.None, 2018, https://doi.org/10.3389/fbuil.2018.00063
  2. Vibration characteristics of nanobeam with exponentially varying flexural rigidity resting on linearly varying elastic foundation using differential quadrature method vol.6, pp.8, 2018, https://doi.org/10.1088/2053-1591/ab1f47
  3. Torsional dynamics of coaxial nanotubes with different lengths in viscoelastic medium vol.25, pp.10, 2018, https://doi.org/10.1007/s00542-019-04446-8
  4. Thermal stress and magnetic effects on nonlinear vibration of nanobeams embedded in nonlinear elastic medium vol.43, pp.10, 2018, https://doi.org/10.1080/01495739.2020.1780175