• Title/Summary/Keyword: lee wave

Search Result 6,195, Processing Time 0.034 seconds

Denoising and Deblurring Images Using Backward Solution of Nonlinear Wave Equation

  • Lee, In-Jung;Min, Joon-Young;Lee, Hyung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.289-291
    • /
    • 2005
  • In this paper, we introduce the backward solution of nonlinear wave equation for denoising. The PDE method is approved about 4 PSNR value compare with any convolution method. In neuro images, denoising process using proposed PDE is good about 0.2% increased Voxel Region.

  • PDF

Numerical Models of Water Wave with Parabolic and Hyperbolic Forms

  • Lee, Jong-Kyu;Lee, Chang-Hae
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.25-37
    • /
    • 1991
  • The numerical models of the parabolic equation, applicable only to the progressive wave, and hyperblic equation, which may consider even the reflected wave, were developed and applied to the area of the submerged circular shoal and then results obtained from both models were compared with experimental measurements and each other. The hyperbolic model was further applied to both the detaced breakwater and the breakwater with a gap. The numerical results were plotted and compated with the existing data. Numerical solutions were obtained with the finite difference method.

  • PDF

Effect of Hematocrit Level on the Radial Pulse Wave (적혈구 용적이 요골 동맥의 맥파에 미치는 영향)

  • Ryu, Hyun-Hee;Jeon, Young-Ju;Kim, Jae-Uk;Lee, Hae-Jung;Woo, Young-Jae;Lee, Yu-Jung;Kim, Jong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.1035-1040
    • /
    • 2009
  • In this work, we investigate the effect of blood hematocrit level on the radial pulse wave to study the clinical application of the pulse analyzer. For this purpose, we measured the radial pulse wave at the left Gwan for 15 males with abnormal high hematocrit level and 47 males with normal hematocrit level at the age of thirties and forties. Various variables of the radial pulse wave between two groups were analyzed by Student's T test. We found significant differences in several characteristic variables in the amplitude, time-span and the integrated area of the amplitude and time of the pulse wave. The systolic peak in the amplitude of the radial pulse wave was higher in abnormal high hematocrit group. In contrast, the third peak from the second incisure was higher and longer in normal hematocrit group. Our study suggests that the radial pulse wave can be useful in distinguishing the patient group with high hematocrit level and thus with high blood viscosity. Our finding may motivate research activities towards diverse clinical applications of the pulse wave.

Variation Characteristics of Irregular Wave Fields around 2-Dimensional Low-Crested-Breakwater (2차원저천단구조물(LCS)의 주변에서 불규칙파동장의 변동특성)

  • Lee, Kwang-Ho;Choi, Goon Ho;Lee, Jun Hyeong;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.356-367
    • /
    • 2019
  • This study evaluates the variation characteristics of irregular wave fields for two-dimensional Low-Crested Structure (LCS) by olaFlow model based on the two-phases flow by numerical analysis. The numerical results of olaFlow model are verified by comparing irregular wave profile of target wave spectrum and measured one, and their spectra. In addition, spacial variation of irregular wave spectrum, wave transmission ratio, root-mean square wave height, time-averaged velocity and time-averaged turbulent kinetic energy by two-dimensional LCS are discussed numerically. The time-averaged velocity, one of the most important numerical results is formed counterclockwise circulating cell and clockwise nearshore current on the front of LCS, and strong uni-directional flow directing onshore side around still water level.

The Effect of Wave Pressure on Stability Rubble Mound Breakwater (사석식 경사방파제에 작용하는 파압이 제체 안정성에 미치는 영향)

  • Cheong, Gyu-Hyang;Lee, Yong-Dae;Lee, Byong-Moon;Jeong, Sam-Gi;Kim, Keun-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.579-584
    • /
    • 2009
  • Arrangement of the facilities for improving harbor functions depends on sea and land conditions such as the ship's arrival and departure conditions, waves and tide. And the plan and the size of the facilities depend much on harbor and marine environment condition such as cargo quantity, ship size, ship traffic and seawater circulation. Among these, waves have so much effect on a breakwater design that it is the most important to understand their characteristics and to apply them to breakwater design. Therefore, to analyze the effect of waves characteristics over a rubble mound breakwater, we have calculated wave pressure by using numerical analysis at each tide level and have analyzed the effect of wave pressure on structure stability by conducting the stability analysis with the wave pressure. As a result, it is found that during low and mean tide level time the biggest wave pressure is estimated near calm water level. But during high tide time, the biggest wave pressure is estimated in front of capping. And the stability analysis indicates also that a structure is most unstable when low tide time wave pressure is acting on. After reviewing the stability of a structure by applying vertical and horizon wave forces, it is concluded that safety factor is lower than ordinary time(max. about 15%), is also reviewed when designing a rubble mound breakwater.

  • PDF

Horizontal Wave Pressures on the Crown Wall of Rubble Mound Breakwater under Non-Breaking Condition (경사식방파제의 상치콘크리트에 작용하는 수평파압: 비쇄파조건)

  • Lee, Jong-In;Lee, Geum Yong;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.321-332
    • /
    • 2021
  • The crown wall with parapet on top of the rubble mound breakwater represents a relatively economic and efficient solution to reduce the wave overtopping discharge. However, the inclusion of parapet leads to increased wave pressure on the crown wall. The wave pressure on the crown wall is investigated by physical model test. To design the crown wall the wave loads should be available, and the horizontal wave pressure is still unclear. Regarding to the horizontal wave pressure on the crown wall, a series of experiments were conducted by changing the rubble mound type structure and the wave conditions. Based on these results, pressure modification factors of Goda's (1974, 2010) formula have been suggested, which can be applicable for the practical design of the crown wall of the rubble-mound breakwater covered by tetrapods.

Joint Inversion Analysis Using the Dispersion Characteristics of Love Wave and Rayleigh Wave (II) - Verification and Application of Joint Inversion Analysis - (러브파와 레일리파의 분산특성을 이용한 동시역산해석(II) - 동시역산해석기법의 검증 및 적용 -)

  • Lee Il-Wha;Joh Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.155-165
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. Those waves are used to determine the ground stiffness profile using their dispersion characteristics. The fact that Love wave is not contaminated by P-wave makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than that of others. Based on theoretical research, the joint inversion analysis that uses the dispersion information of both Love and Rayleigh wave was proposed. Numerical analysis, theoretical model test, and field test were performed to verify the joint inversion analysis. Results from 2D, 3D finite element analysis were compared with those from the transfer matrix method in the numerical analysis. On the other hand, the difference of results from each inversion analysis was investigated in the theoretical model analysis. Finally, practical applicability of the joint inversion analysis was verified by performing field test. As a result, it is confirmed that considering dispersion information of each wave simultaneously prevents excessive divergence and improves accuracy.

Characteristics of Surface and Internal Wave Propagation through Density Stratification (밀도성층을 통과하는 수면파 및 내부파의 전파특성)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.819-830
    • /
    • 2016
  • Hydrodynamic characteristics of wave propagation through density stratification have not been identified in details. So this study conducted a numerical simulation using LES-WASS-3D ver. 2.0 for analysis of density current due to water temperature and salinity in order to analyze hydraulic characteristics under wave action in a two-layer density stratified fluid. For the validity and effectiveness of numerical wave tank used, it was compared and analyzed with the experiment to show waveform based on $3^{rd}$-order Stoke wave theory at the internal of a density stratification. Using the results obtained from numerical simulation, the surface and internal wave heights are reduced as the wave propagates in a two-layer density stratified water. And the surface or internal wave attenuation became more serious as the vorticities were increased by the velocity difference of wave propagation due to the upper-lower density difference around the interface of a density stratification. As well, the surface and internal wave attenuations became more serious with higher density difference and depth ratio between upper and lower layers when the wave propagates through a density stratification.

A Study on Improving Performance of the Vehicular WAVE Antenna System using the EBG structure for ITS wireless communications (동향분석ITS 무선통신을 위한 EBG 구조를 적용한 자동차용 WAVE 안테나 시스템 성능향상연구)

  • Yeon, KyuBong;Lee, DuHo;Hwang, JinKyu;Yang, TaeHoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.176-185
    • /
    • 2017
  • This paper describes a design of the WAVE antenna system in V2X wireless communication systems for Intelligent Transport Systems. The WAVE standard protocols defined 5.825~5.9GHz frequency range for wireless communications with V2X. In a recent, A study of WAVE communication system it has been studied mainly the base station and the OBU technology in order to improve the communication performance of the communication distance. In this paper, the proposed vehicular WAVE antenna using the EBG structure is to improve performance. The proposed WAVE antenna with EBG shows improvement of return loss and radiation beam pattern. The performance of WAVE communication systems for intelligent transport systems is dependent on the performance of antenna. The proposed vehicular antenna for WAVE communication systems shows improvement of return loss for performance.