• Title/Summary/Keyword: least-squares methods

Search Result 633, Processing Time 0.024 seconds

Comparison of Partial Least Squares and Support Vector Machine for the Flash Point Prediction of Organic Compounds (유기물의 인화점 예측을 위한 부분최소자승법과 SVM의 비교)

  • Lee, Chang Jun;Ko, Jae Wook;Lee, Gibaek
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.717-724
    • /
    • 2010
  • The flash point is one of the most important physical properties used to determine the potential for fire and explosion hazards of flammable liquids. Despite the needs of the experimental flash point data for the design and construction of chemical plants, there is often a significant gap between the demands for the data and their availability. This study have built and compared two models of partial least squares(PLS) and support vector machine(SVM) to predict the experimental flash points of 893 organic compounds out of DIPPR 801. As the independent variables of the models, 65 functional groups were chosen based on the group contribution method that was oriented from the assumption that each fragment of a molecule contributes a certain amount to the value of its physical property, and the logarithm of molecular weight was added. The prediction errors calculated from cross-validation were employed to determine the optimal parameters of two models. And, an optimization technique should be used to get three parameters of SVM model. This work adopted particle swarm optimization that is one of heuristic optimization methods. As the selection of training data can affect the prediction performance, 100 data sets of randomly selected data were generated and tested. The PLS and SVM results of the average absolute errors for the whole data range from 13.86 K to 14.55 K and 7.44 K to 10.26 K, respectively, indicating that the predictive ability of the SVM is much superior than PLS.

Iterative parameter estimation for nonlinear measurements (비선형 측정에 대한 반복 계수측정 기법)

  • Chung, Tae-Ho;Je, Chang-Hae;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.314-317
    • /
    • 1993
  • In this paper, the IPE(Iterative Parameter Estimation) methods for the nonlinear measurements are proposed. The IPE methods convert the problems of the parameter estimation for the nonlinear measurements to that of the solution of the nonlinear equations approximately and use several iterative numerical solutions, such as fixed points theory, Newton's methods, quasi-Newton's methods and steepest descent techniques. the IPE methods for the nonlinear measurements-in the case of the error estimation for the inertial navigation systems are simulated, and it is found that the estimation errors for the nonlinear measurements decrease rapidly and converge to almost that of the linear LSE(Least Squares Estimation) when the IPE methods are applied.

  • PDF

Preprocessing and Calibration of Optical Diffuse Reflectance Signal for Estimation of Soil Physical and Chemical Properties in the Central USA (미국 중부 토양의 이화학적 특성 추정을 위한 광 확산 반사 신호 전처리 및 캘리브레이션)

  • La, Woo-Jung;Sudduth, Kenneth A.;Chung, Sun-Ok;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.430-437
    • /
    • 2008
  • Optical diffuse reflectance sensing in visible and near-infrared wavelength ranges is one approach to rapidly quantify soil properties for site-specific management. The objectives of this study were to investigate effects of preprocessing of reflectance data and determine the accuracy of the reflectance approach for estimating physical and chemical properties of selected Missouri and Illinois, USA surface soils encompassing a wide range of soil types and textures. Diffuse reflectance spectra of air-dried, sieved samples were obtained in the laboratory. Calibrations relating spectra to soil properties determined by standard methods were developed using partial least squares (PLS) regression. The best data preprocessing, consisting of absorbance transformation and mean centering, reduced estimation errors by up to 20% compared to raw reflectance data. Good estimates ($R^2=0.83$ to 0.92) were obtained using spectral data for soil texture fractions, organic matter, and CEC. Estimates of pH, P, and K were not good ($R^2$ < 0.7), and other approaches to estimating these soil chemical properties should be investigated. Overall, the ability of diffuse reflectance spectroscopy to accurately estimate multiple soil properties across a wide range of soils makes it a good candidate technology for providing at least a portion of the data needed in site-specific management of agriculture.

Development of an On-line Measurement Method for Clean Biofuel Based on Near Infrared Spectroscopy and Chemometrics (근적외선 분광학과 화학계량학에 기반한 청정 바이오연료 실시간 품질 측정 기술 개발)

  • Cho, Hyeong-Su;Ryu, Jun-Hyung;Liu, J. Jay
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.215-224
    • /
    • 2011
  • It is an important issue to develop quality assessing system for biofuel for the purpose of accelerating the mass production of biofuel. It is particularly challenging to conduct testing method in the mass production of bioethanol while meeting quality specifications such as ASTM (American Society for Testing & Materials) D4806-10. In order to address this challenge, this paper proposes on-line spectroscopic quality assesment system based on Near Infrared spectrum and Partial Least Squares method in Chemometrics. As a result of testing a number of preprocessing methods and Partial Least Squares, it was found out that Savitzky-Golay method showed the best performance in terms of spectrum correction, noise reduction, and model maintenance. The proposed system allows us to assess multiple quality components continuously using spectroscopic facilities with the cheap cost. Since the value of R2 is more than 0.99, it is possible to replace the laboratory analysis.

Number of sampling leaves for reflectance measurement of Chinese cabbage and kale

  • Chung, Sun-Ok;Ngo, Viet-Duc;Kabir, Md. Shaha Nur;Hong, Soon-Jung;Park, Sang-Un;Kim, Sun-Ju;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.169-175
    • /
    • 2014
  • Objective of this study was to investigate effects of pre-processing method and number of sampling leaves on stability of the reflectance measurement for Chinese cabbage and kale leaves. Chinese cabbage and kale were transplanted and cultivated in a plant factory. Leaf samples of the kale and cabbage were collected at 4 weeks after transplanting of the seedlings. Spectra data were collected with an UV/VIS/NIR spectrometer in the wavelength region from 190 to 1130 nm. All leaves (mature and young leaves) were measured on 9 and 12 points in the blade part in the upper area for kale and cabbage leaves, respectively. To reduce the spectral noise, the raw spectral data were preprocessed by different methods: i) moving average, ii) Savitzky-Golay filter, iii) local regression using weighted linear least squares and a $1^{st}$ degree polynomial model (lowess), iv) local regression using weighted linear least squares and a $2^{nd}$ degree polynomial model (loess), v) a robust version of 'lowess', vi) a robust version of 'loess', with 7, 11, 15 smoothing points. Effects of number of sampling leaves were investigated by reflectance difference (RD) and cross-correlation (CC) methods. Results indicated that the contribution of the spectral data collected at 4 sampling leaves were good for both of the crops for reflectance measurement that does not change stability of measurement much. Furthermore, moving average method with 11 smoothing points was believed to provide reliable pre-processed data for further analysis.

Hyperspectral imaging technique to evaluate the firmness and the sweetness index of tomatoes

  • Rahman, Anisur;Park, Eunsoo;Bae, Hyungjin;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.823-837
    • /
    • 2018
  • The objective of this study was to evaluate the firmness and the sweetness index (SI) of tomatoes with a hyperspectral imaging (HSI) technique within the wavelength range of 1000 - 1550 nm. The hyperspectral images of 95 tomatoes were acquired with a push-broom hyperspectral reflectance imaging system, from which the mean spectra of each tomato were extracted from the regions of interest. The reference firmness and sweetness index of the same sample was measured and calibrated with their corresponding spectral data by partial least squares (PLS) regression with different preprocessing methods. The calibration model developed by PLS regression based on the Savitzky-Golay second-derivative preprocessed spectra resulted in a better performance for both the firmness and the SI of the tomatoes compared to models developed by other preprocessing methods. The correlation coefficients ($R_{pred}$) were 0.82, and 0.74 with a standard error of prediction of 0.86 N, and 0.63, respectively. Then, the feature wavelengths were identified using a model-based variable selection method, i.e., variable importance in projection, from the PLS regression analyses. Finally, chemical images were derived by applying the respective regression coefficients on the spectral image in a pixel-wise manner. The resulting chemical images provided detailed information on the firmness and the SI of the tomatoes. The results show that the proposed HSI technique has potential for rapid and non-destructive evaluation of firmness and the sweetness index of tomatoes.

Estimation of structural vector autoregressive models

  • Lutkepohl, Helmut
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.421-441
    • /
    • 2017
  • In this survey, estimation methods for structural vector autoregressive models are presented in a systematic way. Both frequentist and Bayesian methods are considered. Depending on the model setup and type of restrictions, least squares estimation, instrumental variables estimation, method-of-moments estimation and generalized method-of-moments are considered. The methods are presented in a unified framework that enables a practitioner to find the most suitable estimation method for a given model setup and set of restrictions. It is emphasized that specifying the identifying restrictions such that they are linear restrictions on the structural parameters is helpful. Examples are provided to illustrate alternative model setups, types of restrictions and the most suitable corresponding estimation methods.

Novel Peak-to-Average Power Ratio Reduction Methods for OFDM/OQAM Systems

  • Sandeep, Vangala;Anuradha, Sundru
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1124-1134
    • /
    • 2016
  • The tone reservation method is one of the most effective pre-distortion methods for peak-to-average power ratio reduction in orthogonal frequency division multiplexing (OFDM) systems. Its direct application to OFDM systems with offset quadrature amplitude modulation (OQAM) is, however, not effective. In this paper, two novel TR-based methods are proposed, specifically designed for OFDM/OQAM systems by taking into consideration the overlapping nature of OQAM signals. These two methods have different approaches to the generation of the peak-cancelling signal. The first one (overlapped scaling tone reservation) generates the peak-cancelling signal using a least squares approximation algorithm with possible adjacent symbol overlap; the second one (multi-kernel tone reservation) generates the peak-cancelling signal by using multiple impulse-like time domain kernels. It is shown by simulation that, when used in OFDM/OQAM systems, the proposed methods can provide better performance than the direct application of the existing controlled clipping tone reservation method, and even outperform the multi-block tone reservation method.

A Comparision on CERES & Robust-CERES

  • Oh, Kwang-Sik;Do, Soo-Hee;Kim, Dae-Hak
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.93-100
    • /
    • 2003
  • It is necessary to check the curvature of selected covariates in regression diagnostics. There are various graphical methods using residual plots based on least squares fitting. The sensitivity of LS fitting to outliers can distort their residuals, making the identification of the unknown function difficult to impossible. In this paper, we compare combining conditional expectation and residual plots(CERES Plots) between least square fit and robust fits using Huber M-estimator. Robust CERES will be far less distorted than their LS counterparts in the presence of outliers and hence, will be more useful in identifying the unknown function.

  • PDF

Prediction of Chemical Compositions for On-line Quality Measurement of Red Pepper Powder Using Near Infrared Reflectance Spectroscopy (NIRS)

  • Lee, Sun-Mee;Kim, Su-Na;Park, Jae-Bok;Hwang, In-Kyeong
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.280-285
    • /
    • 2005
  • Applicability of near infrared reflectance spectroscopy (NIRS) was examined for quality control of red pepper powder in milling factories. Prediction of chemical composition was performed using modified partial least square (MPLS) techniques. Analysis of total 51 and 21 red pepper powder samples by conventional methods for calibration and validation, respectively, revealed standard error of prediction (SEP) and correlation coefficient ($R^2$) of moisture content, ASTA color value, capsaicinoid content, and total sugar content were 0.55 and 0.90, 8.58 and 0.96, 31.60 and 0.65, and 1.82 and 0.86, respectively; SEP and $R^2$ were low and high, respectively, except for capsaicinoid content. The results indicate, with slight improvement, on-line quality measurement of red pepper powder with NIRS could be applied in red pepper milling factories.