• Title/Summary/Keyword: learning-curve effects

Search Result 25, Processing Time 0.021 seconds

The Longitudinal Study on Structural Relationship between Adolescent's Self_Esteem Change and Its Influencing Factors

  • Choi, Chiwon;Kim, Hyung-Hee;Park, Hwieseo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.159-166
    • /
    • 2020
  • The purpose of this research is to suggest some practical and policy implications for improving adolescent's self-esteem through analyzing longitudinally the effects of parental attitude, peer relationship, student-teacher relationship, school learning activity, life-goal on adolescent's self-esteem by using latent growth curve model. Analytical data was obtained from the KYCPS. The analytical results showed that the change model of adolescent's self_esteem turned out to be a leaner model in which the change rate and intercept were significant. Second, time dependent variables influence on adolescent's self_ esteem meaningfully. Third, time dependent variables influence on adolescent's self_ esteem changes significantly. This study proposed some policy implications basing on these findings.

Development of a predictive model for hypoxia due to sedatives in gastrointestinal endoscopy: a prospective clinical study in Korea

  • Jung Wan Choe;Jong Jin Hyun;Seong-Jin Son;Seung-Hak Lee
    • Clinical Endoscopy
    • /
    • v.57 no.4
    • /
    • pp.476-485
    • /
    • 2024
  • Background/Aims: Sedation has become a standard practice for patients undergoing gastrointestinal (GI) endoscopy. However, considering the serious cardiopulmonary adverse events associated with sedatives, it is important to identify patients at high risk. Machine learning can generate reasonable prediction for a wide range of medical conditions. This study aimed to evaluate the risk factors associated with sedation during GI endoscopy and develop a predictive model for hypoxia during endoscopy under sedation. Methods: This prospective observational study enrolled 446 patients who underwent sedative endoscopy at the Korea University Ansan Hospital. Clinical data were used as predictor variables to construct predictive models using the random forest method that is a machine learning algorithm. Results: Seventy-two of the 446 patients (16.1%) experienced life-threatening hypoxia requiring immediate medical intervention. Patients who developed hypoxia had higher body weight, body mass index (BMI), neck circumference, and Mallampati scores. Propofol alone and higher initial and total dose of propofol were significantly associated with hypoxia during sedative endoscopy. Among these variables, high BMI, neck circumference, and Mallampati score were independent risk factors for hypoxia. The area under the receiver operating characteristic curve for the random forest-based predictive model for hypoxia during sedative endoscopy was 0.82 (95% confidence interval, 0.79-0.86) and displayed a moderate discriminatory power. Conclusions: High BMI, neck circumference, and Mallampati score were independently associated with hypoxia during sedative endoscopy. We constructed a model with acceptable performance for predicting hypoxia during sedative endoscopy.

Portfolio Decision Model based on the Strategic Adjustment Capacity: A Bionic Perspective on Bird Predation and Firm Competition

  • Mao, Chao;Chen, Shou;Liu, Duan
    • Journal of Distribution Science
    • /
    • v.13 no.1
    • /
    • pp.7-18
    • /
    • 2015
  • Purpose - This study integrates a corporate competition system with a bird predation system to examine how organizational strategic adjustment capacity influences firm performance. By proving the prominent effects on performance, a financial vector is constructed to represent corporate strategic adjustment results, and an operation capacity vector is constructed, which can be categorized as a parameter for locating birds. All these works help us to propose a new method of investment, the portfolio decision model based on the strategic adjustment capacity. Research design, data, and methodology - Strategic adjustment capacity can be decomposed into three aspects: the organizational learning capacity from the top firms, the extent to which firms maintainor rely on the best operational capacity vector in history, and the ability to eliminate the disadvantages or retain the advantages of the operation capacity vector from the previous year. The method of solving cyclic equations is designed to evaluate strategic adjustment. Firms manufacturing specialized equipment are chosen to test the effects of the strategic adjustment capacity on three aspects of firm performance. Results - There is a positive correlation between the capacity to learn from the best firms and performance improvement. The relationship between the dependence or maintenance of a firm's advantages and performance improvement is a U-shape curve, and there is no significant effect of inertial control on performance improvement. Conclusions - A firm's competition system is a sophisticated adaptation, and competitive advantage and performance can be investigated based on the principles of competition in nature.

Classification of 18F-Florbetaben Amyloid Brain PET Image using PCA-SVM

  • Cho, Kook;Kim, Woong-Gon;Kang, Hyeon;Yang, Gyung-Seung;Kim, Hyun-Woo;Jeong, Ji-Eun;Yoon, Hyun-Jin;Jeong, Young-Jin;Kang, Do-Young
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.99-106
    • /
    • 2019
  • Amyloid positron emission tomography (PET) allows early and accurate diagnosis in suspected cases of Alzheimer's disease (AD) and contributes to future treatment plans. In the present study, a method of implementing a diagnostic system to distinguish ${\beta}$-Amyloid ($A{\beta}$) positive from $A{\beta}$ negative with objectiveness and accuracy was proposed using a machine learning approach, such as the Principal Component Analysis (PCA) and Support Vector Machine (SVM). $^{18}F$-Florbetaben (FBB) brain PET images were arranged in control and patients (total n = 176) with mild cognitive impairment and AD. An SVM was used to classify the slices of registered PET image using PET template, and a system was created to diagnose patients comprehensively from the output of the trained model. To compare the per-slice classification, the PCA-SVM model observing the whole brain (WB) region showed the highest performance (accuracy 92.38, specificity 92.87, sensitivity 92.87), followed by SVM with gray matter masking (GMM) (accuracy 92.22, specificity 92.13, sensitivity 92.28) for $A{\beta}$ positivity. To compare according to per-subject classification, the PCA-SVM with WB also showed the highest performance (accuracy 89.21, specificity 71.67, sensitivity 98.28), followed by PCA-SVM with GMM (accuracy 85.80, specificity 61.67, sensitivity 98.28) for $A{\beta}$ positivity. When comparing the area under curve (AUC), PCA-SVM with WB was the highest for per-slice classifiers (0.992), and the models except for SVM with WM were highest for the per-subject classifier (1.000). We can classify $^{18}F$-Florbetaben amyloid brain PET image for $A{\beta}$ positivity using PCA-SVM model, with no additional effects on GMM.

Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances

  • SuJin Bak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.133-153
    • /
    • 2023
  • In this paper, we propose a novel approach to investigating brain-signal measurement technology using Electroencephalography (EEG). Traditionally, researchers have combined EEG signals with bio-signals (BSs) to enhance the classification performance of emotional states. Our objective was to explore the synergistic effects of coupling EEG and BSs, and determine whether the combination of EEG+BS improves the classification accuracy of emotional states compared to using EEG alone or combining EEG with pseudo-random signals (PS) generated arbitrarily by random generators. Employing four feature extraction methods, we examined four combinations: EEG alone, EG+BS, EEG+BS+PS, and EEG+PS, utilizing data from two widely-used open datasets. Emotional states (task versus rest states) were classified using Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) classifiers. Our results revealed that when using the highest accuracy SVM-FFT, the average error rates of EEG+BS were 4.7% and 6.5% higher than those of EEG+PS and EEG alone, respectively. We also conducted a thorough analysis of EEG+BS by combining numerous PSs. The error rate of EEG+BS+PS displayed a V-shaped curve, initially decreasing due to the deep double descent phenomenon, followed by an increase attributed to the curse of dimensionality. Consequently, our findings suggest that the combination of EEG+BS may not always yield promising classification performance.