• 제목/요약/키워드: learning rule

검색결과 653건 처리시간 0.026초

PBIL을 이용한 소형 스테레오 정합 및 대안 알고리즘 (A Simple Stereo Matching Algorithm using PBIL and its Alternative)

  • 한규필
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.429-436
    • /
    • 2005
  • 본 논문에서는 유전자 알고리즘의 일반적인 문제점인 과도한 저장공간의 소모와 탐색의 비효율성을 줄이기 위해 PBIL을 이용한 단순한 스테레오 정합 기법을 제안한다. PBIL은 확률벡터에 기반해서 통계적 탐색과 경쟁학습을 이용하는 변종 유전자 알고리즘이며 확률벡터의 사용으로 인해 직렬 및 병렬 유전자 알고리즘군에 비해 단순한 구조를 가진다. 본 논문에서는 이 PBIL을 스테레오 정합 환경에 맞게 변형 및 단순화시켜 정합 알고리즘을 개발한다. 높은 적응성을 갖는 염색체는 생존 확률 또한 높다는 진화 법칙을 보존하면서 유전자 풀, 염색체 교차 및 유전자 돌연변이를 제거할 수 있으며 그 결과 저장공간을 줄이고 정합 규칙을 간소화하여 계산 비용을 감소시킬 수 있다. 추가적으로 다해상도 정합 기법처럼 넓은 영역의 변이 일관성을 획득하기 위해 변이 연속성에 대한 이웃들의 거리를 제어하는 방식을 추가하여 고정된 작은 정합창을 사용하면서 안정된 결과를 얻을 수 있게 한다. 마지막으로 단순한 시스템에 적용될 수 있게 하기 위해서 확률벡터를 사용하지 않는 제안한 알고리즘의 소형 대안 기법을 제시한다.

의미 프레임과 유의어 클러스터를 이용한 한국어 의미역 인식 (Korean Semantic Role Labeling Using Semantic Frames and Synonym Clusters)

  • 임수종;임준호;이충희;김현기
    • 정보과학회 논문지
    • /
    • 제43권7호
    • /
    • pp.773-780
    • /
    • 2016
  • 기계학습 기반의 의미역 인식에서 어휘, 구문 정보가 자질로 주로 쓰이지만, 의미 정보를 분석하는 의미역 인식은 의미 정보 또한 매우 유용한 정보이다. 그러나, 기존 연구에서는 의미 정보를 활용할 수 있는 방법이 제한되어 있기 때문에, 소수의 연구만 진행되었다. 본 논문에서는 의미 정보를 활용하는 방안으로 동형이의어 수준의 의미 애매성 해소 기술, 고유 명사에 대한 개체명 인식 기술, 의미 정보에 기반한 필터링, 유의어 사전을 이용한 클러스터 및 기존 의미 프레임 정보 확장, 구문-의미 정보 연동 규칙, 필수 의미역 오류 보정 등을 제안한다. 제안하는 방법은 기존 연구 대비 뉴스 도메인인 Korean Propbank는 3.77, 위키피디아 문서 기반의 Exobrain GS 3.0 평가셋에서는 8.05의 성능 향상을 보였다.

중등수학 교과서가 다루는 미적분 역사 서술의 비판과 대안 - 17세기까지의 미적분의 역사를 중심으로 - (Criticism and alternatives of calculus history described by secondary school mathematics textbooks - Focusing on the history of calculus until the 17th century -)

  • 김상훈;박제남
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제31권2호
    • /
    • pp.139-152
    • /
    • 2017
  • 본 논문에서 미적분을 다루는 중등교과서가 미적분 역사를 어떻게 소개하고 있는지를 알아보았다. 문제점을 파악하기 위하여 우리는 기원전 350~기원전 50년에 목성의 위치를 계산하기 위하여 이루어진 바빌로니아인의 사다리꼴을 사용한 구분구적법 그리고 1000년경 이집트에서 이루어진 이븐 알 하이탐(ibn al-Haytham)의 원판을 이용한 구분구적법 등을 고찰하였다. 이를 바탕으로 미적분 역사에 대한 건설적인 서술 방안을 제시하였다. 결론적으로 우리나라 중등수학 교과서는 뉴턴과 라이프니츠가 미적분을 창안한 것으로 설명하고 그 뿌리를 고대 그리스에 둔다. 미적분의 창안은 바빌로니아와 파티마 왕조(Faṭimah Dynasty: 909-1171)(이집트)에 있으며 인도에서 멱급수의 발전이 이루어진 후 미적분이 유럽에서 발전된 것으로 교과서에 아시아 아프리카의 가치가 소개되는 것이 바람직하다.

Word2Vec과 WordNet 기반 불확실성 단어 간의 네트워크 분석에 관한 연구 (Network Analysis between Uncertainty Words based on Word2Vec and WordNet)

  • 허고은
    • 한국문헌정보학회지
    • /
    • 제53권3호
    • /
    • pp.247-271
    • /
    • 2019
  • 과학에서 지식의 불확실성은 명제가 현재 상태로는 참도 거짓도 아닌 불확실한 상태를 의미한다. 기존의 연구들은 학술 문헌에 표현된 명제를 분석하여 불확실성을 의미하는 단어를 수동적으로 구축하고 구축한 코퍼스를 대상으로 규칙 기반, 기계 학습 기반의 성능평가를 수행해왔다. 불확실성 단어 구축의 중요성은 인지하고 있지만 단어의 의미를 분석하여 자동적으로 확장하고자 하는 시도들은 부족했다. 한편, 계량정보학이나 텍스트 마이닝 기법을 이용하여 네트워크의 구조를 파악하는 연구들은 다양한 학문분야에서 지적 구조와 관계성을 파악하기 위한 방법으로 널리 활용되고 있다. 따라서, 본 연구에서는 기존의 불확실성 단어를 대상으로 Word2Vec을 적용하여 의미적 관계성을 분석하였고, 영어 어휘 데이터베이스이자 시소러스인 WordNet을 적용하여 불확실성 단어와 연결된 상위어, 하위어 관계와 동의어 기반 네트워크 분석을 수행하였다. 이를 통해 불확실성 단어의 의미적, 어휘적 관계성을 구조적으로 파악하였으며, 향후 불확실성 단어의 자동 구축의 확장 가능성을 제시하였다.

원자력안전법 수시출입자 안전관리체계 개편에 대한 방사선학과 재학생들의 융합적 인식 연구 (A Study on the Convergence Perception of Students in Radiology on the Reorganization of Safety Management System by person with frequent access of Nuclear Safety Act)

  • 이보우;김창규
    • 한국융합학회논문지
    • /
    • 제10권6호
    • /
    • pp.89-94
    • /
    • 2019
  • 이 연구는 원자력안전법 개정에 따른 수시출입자 안전관리체계 개편이 적용된 방사선학과 재학생들의 인식도를 알아보고자 K 대학교 방사선학과 재학생 175명을 대상으로 설문조사를 실시하였다. 원자력안전법에 의해 수시출입자로 분류되어 관리를 받을 필요가 있다고 인식하는 재학생은 2학년 98.1%, 3학년 90.3%, 4학년 97.7%로 나타났으며, 수시출입자로 구분되어 촬영실습의 조작에 제한을 받는다는 재학생이 2학년 96.3%, 3학년 74.2%, 4학년 93.2%로 나타났다. 방사선촬영실습에서 방사선장비를 조작하는데 제한을 두는 것은 학생들의 학습권을 침해하는 규정으로 학습에 대한 예외규정을 제정하여 학습권이 침해받지 않도록 정책을 펼쳐나가야 할 것 이다.

영재학생들의 지식수준에 따른 과학적 문제해결 전략 분석 (An Analysis of the Scientific Problem Solving Strategies according to Knowledge Levels of the Gifted Students)

  • 김천웅;정정인
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제38권1호
    • /
    • pp.73-86
    • /
    • 2019
  • The purpose of this study is to investigate the characteristics of problem solving strategies that gifted students use in science inquiry problem. The subjects of the study are the notes and presentation materials that the 15 team of elementary and junior high school students have solved the problem. They are a team consisting of 27 elementary gifted and 29 middle gifted children who voluntarily selected topics related to dimple among the various inquiry themes. The analysis data are the observations of the subjects' inquiry process, the notes recorded in the inquiry process, and the results of the presentations. In this process, the knowledge related to dimple is classified into the declarative knowledge level and the process knowledge level, and the strategies used by the gifted students are divided into general strategy and supplementary strategy. The results of this study are as follows. First, as a result of categorizing gifted students into knowledge level, six types of AA, AB, BA, BB, BC, and CB were found among the 9 types of knowledge level. Therefore, gifted students did not have a high declarative knowledge level (AC type) or very low level of procedural knowledge level (CA type). Second, the general strategy that gifted students used to solve the dimple problem was using deductive reasoning, inductive reasoning, finding the rule, solving the problem in reverse, building similar problems, and guessing & reviewing strategies. The supplementary strategies used to solve the dimple problem was finding clues, recording important information, using tables and graphs, making tools, using pictures, and thinking experiment strategies. Third, the higher the knowledge level of gifted students, the more common type of strategies they use. In the case of supplementary strategy, it was not related to each type according to knowledge level. Knowledge-based learning related to problem situations can be helpful in understanding, interpreting, and representing problems. In a new problem situation, more problem solving strategies can be used to solve problems in various ways.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

Rete 알고리즘의 병렬 및 분산 처리에 관한 기존 연구 분석 (An Analysis of Existing Studies on Parallel and Distributed Processing of the Rete Algorithm)

  • 김재훈
    • 한국정보기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.31-45
    • /
    • 2019
  • 현재 지능적 서비스의 핵심 기술은 딥러닝 즉 신경망, 그리고 GPU 병렬 컴퓨팅 및 빅 데이터와 같은 병렬 분산 처리 기술이다. 하지만 미래의 전 세계적으로 공유된 온톨로지를 통한 지능적 서비스 및 지식 공유 서비스에서는 지식의 표현 및 추론을 위하여 신경망보다 더 나은 방법이 있다. 그것은 시맨틱 웹의 표준 규칙 언어인 RIF 혹은 SWRL의 IF-THEN의 지식 표현이며, 이러한 규칙을 rete 알고리즘을 이용하여 효율적으로 추론할 수 있다. 하지만 단일 컴퓨터에서 동작하는 rete 알고리즘의 처리 규칙 수가 100,000개가 될 경우 그 성능이 수 십 분으로 매우 안 좋아지며, 분명한 한계가 존재한다. 따라서 본 논문에서는 rete 알고리즘의 병렬 및 분산 처리에 대한 과거로부터 현재까지의 연구 내용을 정리 분석하며, 이를 통해 효율적인 rete 알고리즘의 구현을 위해 어떤 측면들이 고려되어야 하는지를 살펴본다.

GCNXSS: An Attack Detection Approach for Cross-Site Scripting Based on Graph Convolutional Networks

  • Pan, Hongyu;Fang, Yong;Huang, Cheng;Guo, Wenbo;Wan, Xuelin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.4008-4023
    • /
    • 2022
  • Since machine learning was introduced into cross-site scripting (XSS) attack detection, many researchers have conducted related studies and achieved significant results, such as saving time and labor costs by not maintaining a rule database, which is required by traditional XSS attack detection methods. However, this topic came across some problems, such as poor generalization ability, significant false negative rate (FNR) and false positive rate (FPR). Moreover, the automatic clustering property of graph convolutional networks (GCN) has attracted the attention of researchers. In the field of natural language process (NLP), the results of graph embedding based on GCN are automatically clustered in space without any training, which means that text data can be classified just by the embedding process based on GCN. Previously, other methods required training with the help of labeled data after embedding to complete data classification. With the help of the GCN auto-clustering feature and labeled data, this research proposes an approach to detect XSS attacks (called GCNXSS) to mine the dependencies between the units that constitute an XSS payload. First, GCNXSS transforms a URL into a word homogeneous graph based on word co-occurrence relationships. Then, GCNXSS inputs the graph into the GCN model for graph embedding and gets the classification results. Experimental results show that GCNXSS achieved successful results with accuracy, precision, recall, F1-score, FNR, FPR, and predicted time scores of 99.97%, 99.75%, 99.97%, 99.86%, 0.03%, 0.03%, and 0.0461ms. Compared with existing methods, GCNXSS has a lower FNR and FPR with stronger generalization ability.

유사도와 연관규칙분석을 이용한 암호화폐 추천모형 (Cryptocurrency Recommendation Model using the Similarity and Association Rule Mining)

  • 김예찬;김진영;김채린;김경재
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.287-308
    • /
    • 2022
  • 최근 비트코인을 필두로한 암호화폐의 폭발적인 성장이 금융 시장의 주요 이슈로 떠오르고 있다. 이에 전 세계적인 암호화폐 투자의 관심이 증가하고 있지만, 24시간 365일 운영되는 시장과 가격 변동성, 그리고 기하 급수적으로 증가하고 있는 암호화폐 종류는 암호화폐 투자자들에게 리스크로 제공되고 있어, 특히 암호화폐 포트폴리오를 구상하는데 있어 추천에 적합하지 않는 암호화폐들을 구분하여 투자자들의 리스크를 감소시킬 수 있는 연구의 필요성이 제기되고 있다. 이에 본 논문은 기존에 있었던 단순히 암호화폐 가격의 미래를 예측하여 수익률을 극대화 하거나, 수익률에 초점을 맞추어 암호화폐 포트폴리오를 구성하는 연구들과 달리, 투자자들의 성향을 반영하고, 투자에 적합한 암호화폐를 머신러닝 기법 중 하나인 Apriori 알고리즘을 활용하여 추천하되, 추천에 적합한 알트코인들을 비트코인의 유사도와 연관규칙을 중심으로 선별하여, 투자자들의 리스크를 감소시킬 수 있는 적합한 추천 방식과 해석을 제시한다.