• 제목/요약/키워드: learning rule

검색결과 653건 처리시간 0.027초

하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출 (Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism)

  • 김진성
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

귀납법칙 학습과 개체위주 학습의 결합방법 (A Combined Method of Rule Induction Learning and Instance-Based Learning)

  • 이창환
    • 한국정보처리학회논문지
    • /
    • 제4권9호
    • /
    • pp.2299-2308
    • /
    • 1997
  • 대부분의 기계학습 방법들은 특정한 방법을 중심으로 연구되어 왔다. 하지만 두 가지 이상의 기계학습방법을 효과적으로 통합할 수 있는 방법에 대한 요구가 증가하며, 이에 따라 본 논문은 귀납법칙 (rule induction) 방법과 개체위주 학습방법 (instance-based learning)을 통합하는 시스템의 개발을 제시한다. 귀납법칙 단계에서는 엔트로피 함수의 일종인 Hellinger 변량을 사용하여 귀납법칙을 자동 생성하는 방법을 보이고, 개체위주 학습방법에서는 기존의 알고리즘의 단점을 보완한 새로운 개체위주 학습방법을 제시한다. 개발된 시스템은 여러 종류의 데이터에 의해 실험되었으며 다른 기계학습 방법과 비교되었다.

  • PDF

유전학 기반 학습 환경하에서 분류 시스템의 성능 향상을 위한 엔-버전 학습법 (An N-version Learning Approach to Enhance the Prediction Accuracy of Classification Systems in Genetics-based Learning Environments)

  • 김영준;홍철의
    • 한국정보처리학회논문지
    • /
    • 제6권7호
    • /
    • pp.1841-1848
    • /
    • 1999
  • 델보는 주어진 사례의 집합으로부터 이들 사례들을 분류할 수 있는 베이지안 분류 규칙들로 이루어진 규칙 집합을 습득하는 유전학 기반 귀납적 학습 시스템이다. 규칙 집합의 습득과정에서 델보가 당면하게 되는 한 가지 문제점은 학습 과정이 최적의 규칙 집합이 아닌 지역 최적치를 습득하고 종료하는 경우가 가끔 발생한다는 것이다. 다른 하나의 문제점은 훈련 사례에 대한 경우와는 달리 새로운 평가 사례에 대해 분류 성능이 현저히 저하되는 규칙 집합을 습득하는 경우가 가끔 발생한다는 것이다. 본 논문에서는 이러한 문제점을 해결하여 보다 성능이 향상된 분류 시스템을 구축하기 위한 기법으로 엔-버전 시스템을 구축함으로써 분류 시스템의 전체적인 성능을 향상시키는 기법이다. 엔-버전 학습법의 구현을 위해 다수의 규칙 집합을 이용하여 최종 분류 결과를 도출해 내기 위한 기법과 습득된 규칙 합들로부터 분류 시스템을 구축하기 위한 최적의 규칙 집합의 조합을 찾기 위한 기법을 제시하고 다수의 사례 집합을 이용하여 엔-버전 학습법이 델보의 학습 환경에 미치는 영향을 평가하였다.

  • PDF

학습 기능을 내장한 신경 회로망의 하드웨어 구현 (Implementation of artificial neural network with on-chip learning circuitry)

  • 최명렬
    • 전자공학회논문지B
    • /
    • 제33B권3호
    • /
    • pp.186-192
    • /
    • 1996
  • A modified learning rule is introduced for the implementation of feedforward artificial neural networks with on-chip learning circuitry using standard analog CMOS technology. Learning rule, is modified form the EBP (error back propagation) rule which is one of the well-known learning rules for the feedforward rtificial neural nets(FANNs). The employed MEBP ( modified EBP) rule is well - suited for the hardware implementation of FANNs with on-chip learning rule. As a ynapse circuit, a four-quadrant vector-product linear multiplier is employed, whose input/output signals are given with voltage units. Two $2{\times}2{\times}1$ FANNs are implemented with the learning circuitry. The implemented FANN circuits have been simulatied with learning test patterns using the PSPICE circuit simulator and their results show correct learning functions.

  • PDF

다층신경망에서 하이브리드 학습 규칙의 구현에 관한 연구 (A Study on the Implementation of Hybrid Learning Rule for Neural Network)

  • 송도선;김석동;이행세
    • 한국음향학회지
    • /
    • 제13권4호
    • /
    • pp.60-68
    • /
    • 1994
  • 본 논문에서는 다층구조 순방향 신경회로망에 적용될 수 있는 것으로 입력의 특징 추출기능(Feature Extractor)이 우수한 Hebb 학습 규칙과 패턴 분류 기능(Classifier)이 우수한 BP 알고리듬을 결합한 Hybrid학습 규칙을 제안하고자 한다. 오차역전파 학습법칙을 적용한 다층구조퍼셉트론(MLP)과는 달리, 다층구조에 오차역전파 학습법칙과 Hebb학습법칙이 동시에 적용될 수 있는 Hybrid(Hebbian+BP)학습법칙은 학습시에 출력층의 연결강도를 제외한 모든 연결강도 계산에 적용되며 출력층에는 기존의 오차역전파법칙만이 적용된다. 출력층에 Hebb 학습법칙을 제외시킨것은 다층구조학습시에 학습의 수렴성에 대한 보장이 주어져 있지 않기 때문이다. 제안된 Hybrid 학습법칙의 성능평가를 위해 몇가지의 영역구분 문제에 적용한 결과 제안된 학습법이 기존의 BP보다 우수함을 보였다. 학습속도면에서는 기존의 BP법칙에 비해 훨씬 빠른 수렴속도를 보여 주었는데, 그중 한가지 예를 보면 제안된 Hybrid법칙에 의한 학습은 기존의 BP의 학습회수의 2/10만으로도 가능함을 보여주었다. 인식률에서도 제안된 법칙에 의한 결과가 BP에 의한 결과보다 최고 약 $0.77\%$ 우수하다.

  • PDF

데이터와 클러스터들의 대표값들 사이의 거리를 이용한 퍼지학습법칙 (Fuzzy Learning Rule Using the Distance between Datum and the Centroids of Clusters)

  • 김용수
    • 한국지능시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.472-476
    • /
    • 2007
  • 학습법칙은 신경회로망의 성능에 중요한 영향을 미친다. 본 논문은 데이터와 클래스들의 대표값들 사이의 거리를 고려하여 학습률을 정하는 새로운 퍼지 학습법칙을 제안한다. 클래스들의 대표값을 조정할 때, 이러한 고려는 outlier에 비하여 결정경계선 근처에 있는 데이터의 반영도를 높임으로써 outlier의 클래스의 대표값에 미치는 영향도를 낮출 수 있다. 따라서 outlier들이 결정경계선을 악화시키는 것을 방지할 수 있다. 이 새로운 퍼지 학습법칙을 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 제안한 퍼지 신경회로망과 다른 감독 신경회로망들의 성능을 비교하기 위하여 iris 데이터를 사용하였다. iris 데이터를 사용하여 테스트한 결과 제안한 퍼지 신경회로망의 성능이 우수함을 보였다.

An improvement of LEM2 algorithm

  • The, Anh-Pham;Lee, Young-Koo;Lee, Sung-Young
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.302-304
    • /
    • 2011
  • Rule based machine learning techniques are very important in our real world now. We can list out some important application which we can apply rule based machine learning algorithm such as medical data mining, business transaction mining. The different between rules based machine learning and model based machine learning is that model based machine learning out put some models, which often are very difficult to understand by expert or human. But rule based techniques output are the rule sets which is in IF THEN format. For example IF blood pressure=90 and kidney problem=yes then take this drug. By this way, medical doctor can easy modify and update some usable rule. This is the scenario in medical decision support system. Currently, Rough set is one of the most famous theory which can be used for produce the rule. LEM2 is the algorithm use this theory and can produce the small set of rule on the database. In this paper, we present an improvement of LEM2 algorithm which incorporates the variable precision techniques.

Ontology Mapping and Rule-Based Inference for Learning Resource Integration

  • Jetinai, Kotchakorn;Arch-int, Ngamnij;Arch-int, Somjit
    • Journal of information and communication convergence engineering
    • /
    • 제14권2호
    • /
    • pp.97-105
    • /
    • 2016
  • With the increasing demand for interoperability among existing learning resource systems in order to enable the sharing of learning resources, such resources need to be annotated with ontologies that use different metadata standards. These different ontologies must be reconciled through ontology mediation, so as to cope with information heterogeneity problems, such as semantic and structural conflicts. In this paper, we propose an ontology-mapping technique using Semantic Web Rule Language (SWRL) to generate semantic mapping rules that integrate learning resources from different systems and that cope with semantic and structural conflicts. Reasoning rules are defined to support a semantic search for heterogeneous learning resources, which are deduced by rule-based inference. Experimental results demonstrate that the proposed approach enables the integration of learning resources originating from multiple sources and helps users to search across heterogeneous learning resource systems.

분류자 시스템을 이용한 인공개미의 적응행동의 학습 (Learning of Adaptive Behavior of artificial Ant Using Classifier System)

  • 정치선;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.361-367
    • /
    • 1998
  • The main two applications of the Genetic Algorithms(GA) are the optimization and the machine learning. Machine Learning has two objectives that make the complex system learn its environment and produce the proper output of a system. The machine learning using the Genetic Algorithms is called GA machine learning or genetic-based machine learning (GBML). The machine learning is different from the optimization problems in finding the rule set. In optimization problems, the population of GA should converge into the best individual because optimization problems, the population of GA should converge into the best individual because their objective is the production of the individual near the optimal solution. On the contrary, the machine learning systems need to find the set of cooperative rules. There are two methods in GBML, Michigan method and Pittsburgh method. The former is that each rule is expressed with a string, the latter is that the set of rules is coded into a string. Th classifier system of Holland is the representative model of the Michigan method. The classifier systems arrange the strength of classifiers of classifier list using the message list. In this method, the real time process and on-line learning is possible because a set of rule is adjusted on-line. A classifier system has three major components: Performance system, apportionment of credit system, rule discovery system. In this paper, we solve the food search problem with the learning and evolution of an artificial ant using the learning classifier system.

  • PDF

비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델 (Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates)

  • 김용수
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.800-804
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning )rector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기존의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC (Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데, supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.