• 제목/요약/키워드: learning object

검색결과 1,573건 처리시간 0.026초

Object tracking algorithm of Swarm Robot System for using Polygon based Q-learning and parallel SVM

  • Seo, Snag-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권3호
    • /
    • pp.220-224
    • /
    • 2008
  • This paper presents the polygon-based Q-leaning and Parallel SVM algorithm for object search with multiple robots. We organized an experimental environment with one hundred mobile robots, two hundred obstacles, and ten objects. Then we sent the robots to a hallway, where some obstacles were lying about, to search for a hidden object. In experiment, we used four different control methods: a random search, a fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process to determine the next action of the robots, and hexagon-based Q-learning, and dodecagon-based Q-learning and parallel SVM algorithm to enhance the fusion model with Distance-based action making (DBAM) and Area-based action making (ABAM) process. In this paper, the result show that dodecagon-based Q-learning and parallel SVM algorithm is better than the other algorithm to tracking for object.

외연적 객체모델의 정형화 (A Formal Presentation of the Extensional Object Model)

  • 정철용
    • Asia pacific journal of information systems
    • /
    • 제5권2호
    • /
    • pp.143-176
    • /
    • 1995
  • We present an overview of the Extensional Object Model (ExOM) and describe in detail the learning and classification components which integrate concepts from machine learning and object-oriented databases. The ExOM emphasizes flexibility in information acquisition, learning, and classification which are useful to support tasks such as diagnosis, planning, design, and database mining. As a vehicle to integrate machine learning and databases, the ExOM supports a broad range of learning and classification methods and integrates the learning and classification components with traditional database functions. To ensure the integrity of ExOM databases, a subsumption testing rule is developed that encompasses categories defined by type expressions as well as concept definitions generated by machine learning algorithms. A prototype of the learning and classification components of the ExOM is implemented in Smalltalk/V Windows.

  • PDF

학습과제 유형별 유의미 연결을 통한 학습객체 기반 개별화 학습 시스템 (Individualized Learning System based on Learning Object, through Semantic Sequencing by Learning Task Types)

  • 홍지영;송기상
    • 컴퓨터교육학회논문지
    • /
    • 제7권6호
    • /
    • pp.47-58
    • /
    • 2004
  • 개별화되고 적응화된 코스를 생성하기 위해서는 학습객체가 논리적 연관성을 가지고 연결되어 있는 기반구조를 갖추어야 한다. 이러한 학습객체간의 논리적 연관성, 그리고 개별 학습자를 고려한 다양한 링크를 통하여 학습의 각 시점에서 각각의 학습자는 서로 다른 학습경로를 제공받을 수 있게 된다. 본 연구는 학습과제 유형별 유의미 연결을 고려하여 학습객체 기반의 개별화 학습 시스템 구조를 설계하는데 목적이 있으며, 이를 위해 '관련성 요소 추출에 관한 연구', '학습목표 맵 구성에 관한 연구', '학습자의 인지상태 판단에 관한 연구'를 수행하였다. 학습객체 기반의 코스 설계가 단지 무의미한 객체들의 집합이라는 비판이 대두되는 시점에서, 본 연구의 학습객체간 관련성을 고려한 개별화학습 시스템 모형 연구는 e-Learning 안에 유의미한 학습과 진정한 교육을 담고자 하는 시도가 될 것이다.

  • PDF

Knowledge Distillation 계층 변화에 따른 Anchor Free 물체 검출 Continual Learning (Anchor Free Object Detection Continual Learning According to Knowledge Distillation Layer Changes)

  • 강수명;정대원;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제25권4호
    • /
    • pp.600-609
    • /
    • 2022
  • In supervised learning, labeling of all data is essential, and in particular, in the case of object detection, all objects belonging to the image and to be learned have to be labeled. Due to this problem, continual learning has recently attracted attention, which is a way to accumulate previous learned knowledge and minimize catastrophic forgetting. In this study, a continaul learning model is proposed that accumulates previously learned knowledge and enables learning about new objects. The proposed method is applied to CenterNet, which is a object detection model of anchor-free manner. In our study, the model is applied the knowledge distillation algorithm to be enabled continual learning. In particular, it is assumed that all output layers of the model have to be distilled in order to be most effective. Compared to LWF, the proposed method is increased by 23.3%p mAP in 19+1 scenarios, and also rised by 28.8%p in 15+5 scenarios.

힘과 위치를 동시에 고려한 양팔 물체 조작 솜씨의 모방학습 (Imitation Learning of Bimanual Manipulation Skills Considering Both Position and Force Trajectory)

  • 권우영;하대근;서일홍
    • 로봇학회논문지
    • /
    • 제8권1호
    • /
    • pp.20-28
    • /
    • 2013
  • Large workspace and strong grasping force are required when a robot manipulates big and/or heavy objects. In that situation, bimanual manipulation is more useful than unimanual manipulation. However, the control of both hands to manipulate an object requires a more complex model compared to unimanual manipulation. Learning by human demonstration is a useful technique for a robot to learn a model. In this paper, we propose an imitation learning method of bimanual object manipulation by human demonstrations. For robust imitation of bimanual object manipulation, movement trajectories of two hands are encoded as a movement trajectory of the object and a force trajectory to grasp the object. The movement trajectory of the object is modeled by using the framework of dynamic movement primitives, which represent demonstrated movements with a set of goal-directed dynamic equations. The force trajectory to grasp an object is also modeled as a dynamic equation with an adjustable force term. These equations have an adjustable force term, where locally weighted regression and multiple linear regression methods are employed, to imitate complex non-linear movements of human demonstrations. In order to show the effectiveness our proposed method, a movement skill of pick-and-place in simulation environment is shown.

A Sketch-based 3D Object Retrieval Approach for Augmented Reality Models Using Deep Learning

  • 지명근;전준철
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.33-43
    • /
    • 2020
  • Retrieving a 3D model from a 3D database and augmenting the retrieved model in the Augmented Reality system simultaneously became an issue in developing the plausible AR environments in a convenient fashion. It is considered that the sketch-based 3D object retrieval is an intuitive way for searching 3D objects based on human-drawn sketches as query. In this paper, we propose a novel deep learning based approach of retrieving a sketch-based 3D object as for an Augmented Reality Model. For this work, we introduce a new method which uses Sketch CNN, Wasserstein CNN and Wasserstein center loss for retrieving a sketch-based 3D object. Especially, Wasserstein center loss is used for learning the center of each object category and reducing the Wasserstein distance between center and features of the same category. The proposed 3D object retrieval and augmentation consist of three major steps as follows. Firstly, Wasserstein CNN extracts 2D images taken from various directions of 3D object using CNN, and extracts features of 3D data by computing the Wasserstein barycenters of features of each image. Secondly, the features of the sketch are extracted using a separate Sketch CNN. Finally, we adopt sketch-based object matching method to localize the natural marker of the images to register a 3D virtual object in AR system. Using the detected marker, the retrieved 3D virtual object is augmented in AR system automatically. By the experiments, we prove that the proposed method is efficiency for retrieving and augmenting objects.

객체 영역에 특화된 뎁스 추정 기반의 충돌방지 기술개발 (Object-aware Depth Estimation for Developing Collision Avoidance System)

  • 황규태;송지민;이상준
    • 대한임베디드공학회논문지
    • /
    • 제19권2호
    • /
    • pp.91-99
    • /
    • 2024
  • Collision avoidance system is important to improve the robustness and functional safety of autonomous vehicles. This paper proposes an object-level distance estimation method to develop a collision avoidance system, and it is applied to golfcarts utilized in country club environments. To improve the detection accuracy, we continually trained an object detection model based on pseudo labels generated by a pre-trained detector. Moreover, we propose object-aware depth estimation (OADE) method which trains a depth model focusing on object regions. In the OADE algorithm, we generated dense depth information for object regions by utilizing detection results and sparse LiDAR points, and it is referred to as object-aware LiDAR projection (OALP). By using the OALP maps, a depth estimation model was trained by backpropagating more gradients of the loss on object regions. Experiments were conducted on our custom dataset, which was collected for the travel distance of 22 km on 54 holes in three country clubs under various weather conditions. The precision and recall rate were respectively improved from 70.5% and 49.1% to 95.3% and 92.1% after the continual learning with pseudo labels. Moreover, the OADE algorithm reduces the absolute relative error from 4.76% to 4.27% for estimating distances to obstacles.

차량의 헤드라이트에 강인한 실시간 객체 영역 검출 (Realtime Object Region Detection Robust to Vehicle Headlight)

  • 연승호;김재민
    • 한국멀티미디어학회논문지
    • /
    • 제18권2호
    • /
    • pp.138-148
    • /
    • 2015
  • Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.

Bounding Box CutMix와 표준화 거리 기반의 IoU를 통한 재활용품 탐지 (Recyclable Objects Detection via Bounding Box CutMix and Standardized Distance-based IoU)

  • 이해진;정희철
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.289-296
    • /
    • 2022
  • In this paper, we developed a deep learning-based recyclable object detection model. The model is developed based on YOLOv5 that is a one-stage detector. The deep learning model detects and classifies the recyclable object into 7 categories: paper, carton, can, glass, pet, plastic, and vinyl. We propose two methods for recyclable object detection models to solve problems during training. Bounding Box CutMix solved the no-objects training images problem of Mosaic, a data augmentation used in YOLOv5. Standardized Distance-based IoU replaced DIoU using a normalization factor that is not affected by the center point distance of the bounding boxes. The recyclable object detection model showed a final mAP performance of 0.91978 with Bounding Box CutMix and 0.91149 with Standardized Distance-based IoU.

12각형 기반의 Q-learning과 SVM을 이용한 군집로봇의 목표물 추적 알고리즘 (Object tracking algorithm of Swarm Robot System for using SVM and Dodecagon based Q-learning)

  • 서상욱;양현창;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.291-296
    • /
    • 2008
  • 본 논문에서는 군집로봇시스템에서 목표물 추적을 위하여 SVM을 이용한 12각형 기반의 Q-learning 알고리즘을 제안한다. 제안한 알고리즘의 유효성을 보이기 위해 본 논문에서는 여러 대의 로봇과 장애물 그리고 하나의 목표물로 정하고, 각각의 로봇이 숨겨진 목표물을 찾아내는 실험을 가정하여 무작위, DBAM과 AMAB의 융합 모델, 마지막으로는 본 논문에서 제안한 SVM과 12각형 기반의 Q-learning 알고리즘을 이용하여 실험을 수행하고, 이 3가지 방법을 비교하여 본 논문의 유효성을 검증하였다.