Previous studies have focused on individual and organizational learning. Amid an increasingly complex business environment, a team system designed to improve flexibility and adaptability constitutes the most basic part of an organization. Still, team learning has rarely been discussed. In addition, team learning behavior, despite being an important part of a team process, is often mentioned as a team-level outcome variable. Given that team learning behavior involves constant changes in thinking and behavior, a shared belief among team members is needed in order to positively influence innovative performance of a team. In spite of that, there has been only limited discussion of it. Besides, few domestic studies have dealt with R&D teams that can clearly demonstrate team learning behavior and team innovative performance. This study is an empirical analysis of the impact of team efficacy on team innovative performance and the mediating role of team learning behavior based on materials collected from team leaders and their immediate subordinates in 268 R&D teams. The analysis showed that team learning behavior actually has a positive effect on team innovative performance. Team efficacy also turned out to have a positive influence on team learning behavior. Lastly, the study found that team learning behavior played a mediating role in the relationship between team efficacy and team innovative performance. Based on those results, the study has identified implications and suggested directions for future research.
Journal of Korea Society of Digital Industry and Information Management
/
v.19
no.3
/
pp.105-115
/
2023
This study analyzed the effects of learning participation motivation and collaborative self-efficacy on knowledge sharing behavior in an online learning environment. Collaborative learning in the online learning environment took the initiative in team formation, learning topic selection, learning planning and execution, and reflection. Collaborative learning was operated as an extracurricular program, and a survey was conducted targeting students who finally completed all learning activities. The results of the study are as follows. First, goal-oriented motivation and self-Efficacy for group work, showed significant influence on knowledge sharing behavior. Second, activity-oriented motivation did not show a statistically significant effect relationship. Interpreting the analysis results, it can be judged that the higher the goal-oriented motivation and self-Efficacy for group work of students who performed collaborative learning in an online learning environment, the higher the willingness to share knowledge, skills, and information they know. This study explored the outcomes of collaborative learning conducted in an online learning environment. It is meaningful that the learner's learning participation motivation was identified and the effect of self-Efficacy for group work, which can be expressed in collaborative learning situations, on knowledge sharing behavior, which is a necessary behavior for group performance, is significant.
International Journal of Control, Automation, and Systems
/
v.6
no.2
/
pp.282-287
/
2008
In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.
Most of the learning analytics research has investigated how quantitative data can affect learning. The information that is provided to learners has been determined by teachers and researchers based on reviews of the previous literature. However, there have been few studies on standard learning activities that are performed in e-learning environments independent of the teaching methods or on learning behavior data that are obtained through learning analytics. This study aims to explore the general learning activities and learning behaviors that can be used in the analysis of learning data. Learning activities and learning behavior are defined in conjunction with the concept of learning analytics to identify the differences between teachers' and learners' learning activities. Learning activities and learning behavior were verified by an expert panel review in an e-learning environment. The differences between instructors and learners in their usage were analyzed using a survey method. As results, 8 learning activities and 29 learning behaviors were validated. The Research has shown that instructors' degree of utilization is higher than that of the learners.
International journal of advanced smart convergence
/
v.13
no.1
/
pp.152-161
/
2024
The purpose of this study sought to determine the impact of shared leadership perceived by organizational members on team effectiveness and team learning behavior. For this purpose, the results of the empirical analysis of 206 organizational members are as follows. First, shared leadership was analyzed to improve team effectiveness. Second, shared leadership had a positive effect on team learning behavior. Third, team learning behavior was statistically significantly analyzed for team effectiveness. This study confirmed the importance of shared leadership, which has a positive impact on team effectiveness and team learning behavior. This may require building a new culture that can demonstrate the inherent leadership of organizational members in the influence relationship between shared leadership, team effectiveness, and team learning behavior. In other words, in order to systematically demonstrate and implement shared leadership, the execution ability of executives, managers, and working-level managers is important. To this end, it is necessary to build an organizational culture that matches the characteristics of the organization and develop and continuously implement human resource development systems and programs that can implement this.
International journal of advanced smart convergence
/
v.9
no.4
/
pp.115-119
/
2020
Recently, CCTV installations are rapidly increasing in the public and private sectors to prevent various crimes. In accordance with the increasing number of CCTVs, video-based abnormal behavior detection in control systems is one of the key technologies for safety. This is because it is difficult for the surveillance personnel who control multiple CCTVs to manually monitor all abnormal behaviors in the video. In order to solve this problem, research to recognize abnormal behavior using deep learning is being actively conducted. In this paper, we propose a model for detecting abnormal behavior based on the deep learning model that is currently widely used. Based on the abnormal behavior video data provided by AI Hub, we performed a comparative experiment to detect anomalous behavior through violence learning and fainting in videos using 2D CNN-LSTM, 3D CNN, and I3D models. We hope that the experimental results of this abnormal behavior learning model will be helpful in developing intelligent CCTV.
The purpose of this study was to examine the effects of undesirable parenting behavior, children's peer relationship and self-regulated learning on children's self-esteem. Using the data from Korean Children and Youth Panel Survey, this study was conducted with Structural Equation Modeling(SEM). The results of this study were as follows. First, parents' undesirable parenting behavior influenced directly on children's self-esteem, and peer relationship. Second, children's peer relationship influenced directly on self-regulated learning, and self-esteem. Third, children's self-regulated learning influenced directly on self-esteem. Fourth, parents' undesirable parenting behavior did not influenced directly on children's self-regulated learning. But children's peer relationship and self-regulated learning had mediating effects on the relationship between undesirable parenting behavior and children's self-esteem.
Although previous studies have made significant progress in adaptive selling behavior (ASB), few studies have considered salesperson's customer orientation (CO) and learning behavior as determinants of effective sales management (ASB and relationship-making efforts), despite the discussion of important roles of these constructs. The authors test not only the relationships of salesperson's CO and market-based learning behavior to ASB and relationship-making efforts, but also the effects of ASB on relationship-making efforts and performance. The results of the study, which is done with samples of salespeople from Korean companies, indicate that salesperson's CO and market-based learning behavior are identified as significant determinants of ASB. Moreover, both salesperson's ASB and relationship-making efforts have significant effects on sales performance. On the other hand, as per salesperson's relationship-making efforts, salesperson's CO has a positive effect, but salesperson's market-based learning behavior and ASB do not influence his or her relationship-making efforts, which suggest a provocative possibility of conceptualization regarding the relationship between ASB and relationship management efforts.
The purpose of this study was to investigate the moderating effects of parental monitoring on the relationship between children's dependency on mobile phones and control of learning behavior. The data came from the 2010 Korean Children and Youth Panel (N = 1,609) conducted by the National Youth Policy Institute. The analysis method used was Structural Equation Modeling by using SPSS 17.0 and AMOS 7.0. To test the significant moderating effects, Ping's two-step technique, which is free from the requirement of nonlinear constraints, was used. Our results demonstrated that children's dependency on mobile phones had negative effects on control of learning behavior, and the interaction effects between such dependency and parental monitoring affected the control of learning behavior. Thus, these results proved the moderating effects of parental monitoring in the control of learning behavior. This study suggests that parental monitoring buffers against having difficulties to control and adjust one's behavior associated with control of learning behavior, which is affected by the dependency on mobile phones among children. We discussed that the risks of children's dependency on mobile phones and parental monitoring should be acknowledge as a significant protective factor.
The Q-learning algorithm based on reinforcement learning is useful for learning the goal for one behavior at a time, using a combination of discrete states and actions. In order to learn multiple actions, applying a behavior-based architecture and using an appropriate behavior adjustment method can make a robot perform fast and reliable actions. Q-learning is a popular reinforcement learning method, and is used much for robot learning for its characteristics which are simple, convergent and little affected by the training environment (off-policy). In this paper, Q-learning algorithm is applied to a lamp robot to learn multiple behaviors (human recognition, desk object recognition). As the learning rate of Q-learning may affect the performance of the robot at the learning stage of multiple behaviors, we present the optimal multiple behaviors learning model by changing learning rate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.