• Title/Summary/Keyword: leak frequency

Search Result 83, Processing Time 0.026 seconds

Identification and Distribution of Leak Sites of Half Mask Respirators (반면형 방진마스크의 누출부위 분포조사)

  • Hur, Ji Yeun;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.180-188
    • /
    • 1994
  • This study was designed to investigate qualitatively whether respirators now being used in workplaces tit workers iflfaces well or not. Leak sites were determined after exposing the subjects to fluorescent aerosol and were analyzed by gender, brand and manufacturing nation. The results were as follows ; 1. Among those leak sites which were classified into four areas(nose, cheek, lip and chin), test aerosol was mostly deposited on the nose and the cheek areas. 2. The mean number of leak sites observed from the female subjects were 2.3 while the number were 2.2 from the male subjects. The most frequently observed leak site was nose and followed by chin, lip and cheek in descending order of frequency. 3. Among different brands of respirators, different leak sites were observed. Test subjects wearing the Sand N brands were more heavily exposed than those of wearing the D and M brands. 4. No significant difference of the number of leak sites were found between Korean-made and American-made masks. However, the most frequent leak site observed for the Korean-made ones was the nose area while it was the chin area for the American-made ones. 5. Analyses of 97 leak sites by shape showed that 27(27.8%) were point types, 54(55.7%) diffuse types and 16(16.5%) streamline types. 6. Test subjects indicated that the facepieces of Korean-made respirators were harder and smaller in size than those of American-made one. The most comfortable respirator selected was the respirator by the N Co. and the most uncomfortable one was the respirator by the D Co. This study suggests that many half-mask respirators now being used in the workplaces may not fit to workers well. Therefore, when selecting respirators, employers are advised to test respirators if they fit to workers well. And manufacturers are recommended to produce effective and comfortable respirators tested qualitatively and quantitatively not only in the laboratory but also in the field.

  • PDF

The leak signal characteristics and estimation of the leak location on water pipeline (상수도관의 누수신호 특성 및 누수지점 추정에 관한 연구)

  • Park, Sangbong;Kim, Kibum;Seo, Jeewon;Kim, Jueon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.461-470
    • /
    • 2018
  • In this study, the leak signal was measured by using an accelerometer to analyze the basic data and methodology for the development of the leak point estimation method in the water supply pipe. The measured results were analyzed by frequency analysis and cross-correlation analysis for leakage signals, and the error range was compared and analyzed with the actual leak point distance. As a result, it was confirmed that the vibration intensity due to leakage from the water leakage point was attenuated according to the distance. In the case of the ductile iron casting used in the experiment, the intensity of the signal at the 945 Hz, 1,500 Hz, 2,300 Hz band was increased with the change of the pressure in the pipe at 4mm of leakage hole. Also, it was confirmed that as the water pressure increases, the intensity of the leak signal increases but the similarity of the signal decreases. The results of this study confirm that the accelerometer sensor can be used efficiently for leak detection and it can be used as a basic data for the analysis for the development of leak point estimation method in the future.

Analysis on Signal Properties due to Concurrent Leaks at Two Points in Water Supply Pipelines (상수도 배관에서 두 지점의 동시 누수에 따른 신호특징 분석)

  • Lee, Young-Sup
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • Intelligent leak detection is an essential component of a underground water supply pipeline network such as a smart water grid system. In this network, numerous leak detection sensors are needed to cover all of the pipelines in a specific area installed at specific regular distances. It is also necessary to determine the existence of any leaks and estimate its location within a short time after it occurs. In this study, the leak signal properties and feasibility of leak location detection were investigated when concurrent leaks occurred at two points in a pipeline. The straight distance between the two leak sensors in the 100A sized cast-iron pipeline was 315.6 m, and their signals were measured with one leak and two concurrent leaks. Each leak location was described after analyzing the frequency properties and cross-correlation of the measured signals.

A Fundamental Study on Leak Detection System for Water Supply Valve Using Smart Bolt (상수도 밸브 누수 탐지용 스마트 볼트 적용의 기초 연구)

  • Park, Chul;Kim, Young-seok;Jung, Hae-Wook;Choi, Sang-sik;Lee, Yong-Beom
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.144-154
    • /
    • 2020
  • Purpose: This paper is a fundamental study on the applicability of the smart bolt developed for monitoring system to detect the leakage of water supply valve. Method: A leak detection experiments were conducted using the smart bolt having embedded strain sensors and accelerometer. The smart bolt used in study meets the allowable criteria of torque and tensile stress for water supply system, and it can be applied to a joint of the water supply valve by behaving well within the allowable limits. Result: As a result of the simulated leak tests, a leak signal at the valve leak point was detected in a band of 60Hz, and the main pipe leaking point was observed to produce a leak signal having much higher frequency than that of the valve leak point. This seems to result in a total coupled vibration under unconfined conditions of the pipes. Conclusion: The smart bolts appeared applicable to detecting a leaking signal from the water supply valve.

In-Situ Application Study on the Power Plant Valve Leak Diagnosis Using Acoustic Emission Technology (음향방출을 이용한 발전용 밸브 누설 진단 현장 적용 연구)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.315-322
    • /
    • 2008
  • Valves in power plants are leaking internally by various damages including insertion of foreign objects on seat, seat crack, defects and fatigue crack of stem packing or welds etc. due to severe operating conditions such as high temperature and high pressure for extended period time. Acoustic emission(AE) technology should be applied in order to diagnose precisely and evaluate these valve internal leak. In this paper, results of studies which have accomplished in actual power plant are presented. We have analyzed background noise, AE signal level and frequency spectrum through laboratory tests on the basis of various actual conditions in power plant, and also have considered evaluation methods on the background noise, AE properties and the detectable minimum leak rate according to valve leak conditions through comparing with results of field tests in power plant. As a result of these studies, we conformed that evaluation of internal leak conditions including discrimination of leak or not, and the detectable minimum leak rate is possible, and also it is expected to contribute to safe operation and prevention of energy loss in power plants.

Pipe Leak Detection System using Wireless Acoustic Sensor Module and Deep Auto-Encoder

  • Yeo, Doyeob;Lee, Giyoung;Lee, Jae-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.59-66
    • /
    • 2020
  • In this paper, we propose a pipe leak detection system through data collection using low-power wireless acoustic sensor modules and data analysis using deep auto-encoder. Based on the Fourier transform, we propose a low-power wireless acoustic sensor module that reduces data traffic by reducing the amount of acoustic sensor data to about 1/800, and we design the system that is robust to noise generated in the audible frequency band using only 20kHz~100kHz frequency signals. In addition, the proposed system is designed using a deep auto-encoder to accurately detect pipe leaks even with a reduced amount of data. Numerical experiments show that the proposed pipe leak detection system has a high accuracy of 99.94% and Type-II error of 0% even in the environment where high frequency band noise is mixed.

Estimation of explosion risk potential in fuel gas supply systems for LNG fuelled ships (액화 천연 가스 연료 선박의 연료 공급 장치 폭발 잠재 위험 분석)

  • Lee, Sangick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.918-922
    • /
    • 2015
  • As international environmental regulations for pollutant and greenhouse gas emissions discharged from ships are being reinforced, it is drawing attention to use LNG as ship fuel. This paper compares the explosion risk potential in the LNG fuel gas supply systems of two types used in marine LNG fuelled vessels. By selecting 8500 TEU class container ships as target, LNG storage tank was designed and pressure conditions were assumed for the use of each fuel supply type. The leak hole sizes were divided into three categories, and the leak frequencies for each category were estimated. The sizes of the representative leak holes and release rates were estimated. The release rate and the leak frequency showed an inverse relationship. The pump type fuel gas supply system showed high leak frequency, and the pressure type fuel gas supply system showed high release rate. Computational fluid dynamics simulation was applied to perform a comparative analysis of the explosion risk potential of each fuel supply system.

Development of leakage test facility for leak signal characteristic analysis in water pipeline (상수도관로 누수신호의 특성 분석을 위한 누수 실험시설 개발)

  • Park, Sanghyuk;Kwak, Philljae;Lee, Hyundong;Choi, Changho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.459-469
    • /
    • 2017
  • A real scale leakage test facility was developed to study the leak signal characteristics of water supply pipelines, and then leak tests were carried out. The facility was designed to overcome the limited experimental circumstances of domestic water supply pipeline experimental facilities. The length of the pipeline, which was installed as a straight line, is 280m. Six pipes were installed on a 70m interval with different pipe material and diameters that are DCIP(D200, D150, D100, D80), PE(D75) and PVC(D75).The intensity of the leakage is adjusted by changing the size of the leak hole and the opening rate of ball valve. Various pressure conditions were simulated using a pressure reducing valve.To minimize external noise sources which, deteriorate the quality of measured leak signal, the facility was built at a quiet area, where traffic and water consumption by customers is relatively rare. In addition, the usage of electric equipment was minimized to block out noise and the facility was operated using manual mode. From the experimental results of measured leakage signal at the facility, it was found that the signal intensity weakened and the signal of high frequency band attenuated as the distance from the water leakage point increased.

Leak Detection and Evaluation for Power Plant Boiler Tubes Using Acoustic Emission (음향방출을 이용한 보일러튜브 누설평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Boiler tubes in power plants are often leaked due to various material degradations including creep and thermal fatigue damage under severe operating conditions such as high temperature and high pressure over an extended period of time. To monitor and diagnose the tubes on site and in real time, the acoustic emission (AE) technology was applied. We developed an AE leak detection system, and used it to study the variation of AE signal from the on-site tubes in response to the changes in the boiler operation condition and to detect the locations of leakage based on it. Detection of leak was performed by acquiring and evaluating the signals in separate regimes of high and low frequency signal. As a result of these studies, we found that on-line monitoring and detection of leak location for boiler tubes is possible using the developed system. Thus, the system is expected to contribute to the safe operation of power plants, and prevent economic losses due to potential leak.