DOI QR코드

DOI QR Code

Estimation of explosion risk potential in fuel gas supply systems for LNG fuelled ships

액화 천연 가스 연료 선박의 연료 공급 장치 폭발 잠재 위험 분석

  • Received : 2015.08.21
  • Accepted : 2015.11.17
  • Published : 2015.11.30

Abstract

As international environmental regulations for pollutant and greenhouse gas emissions discharged from ships are being reinforced, it is drawing attention to use LNG as ship fuel. This paper compares the explosion risk potential in the LNG fuel gas supply systems of two types used in marine LNG fuelled vessels. By selecting 8500 TEU class container ships as target, LNG storage tank was designed and pressure conditions were assumed for the use of each fuel supply type. The leak hole sizes were divided into three categories, and the leak frequencies for each category were estimated. The sizes of the representative leak holes and release rates were estimated. The release rate and the leak frequency showed an inverse relationship. The pump type fuel gas supply system showed high leak frequency, and the pressure type fuel gas supply system showed high release rate. Computational fluid dynamics simulation was applied to perform a comparative analysis of the explosion risk potential of each fuel supply system.

선박으로부터 배출되는 오염원과 온실가스에 대한 국제적 규제가 점점 더 강화되어 감에 따라, 액화 천연 가스를 선박의 연료로 사용하는데 대한 관심이 높아져 가고 있다. 본 연구는 액화 천연 가스 연료 선박에서 사용되는 두 가지 방식의 연료 가스 공급 장치에 대하여 폭발 잠재 위험 분석을 수행하였다. 8500 TEU 급 컨테이너 선박을 목표 선박으로 선정하여, 액화 천연 가스 저장 탱크를 설계하였고 각 연료 공급 방식의 운전을 위한 압력 조건을 가정하였다. 누출공의 크기를 세 개의 범주로 분류하여, 각 누출공 크기 범주에 대한 누출 빈도를 산출하였고, 대표 누출공의 크기와 누출량을 추산하였다. 방출률의 증가와 누출 빈도는 역비례 관계를 보였으며, 펌프 방식 연료 공급 장치에서는 누출 빈도가 높게 나타났고, 가압 방식 연료 공급 장치에서는 방출률이 높게 나타났다. 전산 유체 역학 시뮬레이션을 통하여 폭발 잠재 위험 분석을 수행하고 각 연료 공급 장치에 대한 결과를 비교하였다.

Keywords

References

  1. IMO, Regulations for the prevention of air pollution from ships, Revised MARPOL Annex VI, 2009.
  2. S. W. Seo, B. S. Chu, Y. Y. Noh, W. H. Jang, S. I. Lee, Y. T. Seo, and D. J. Chang, "An economic evaluation of operating expenditures for LNG fuel gas supply systems onboard ocean-going ships considering availability", Ships and Offshore Structures, [Online] Avaliable at: http://dx.doi.org/10.1080/17445302.2014.984389, Accessed 22 Jul. 2015.
  3. S. Kumar, H. T. Kwon, K. H. Choi, W. S. Lim, J. H. Cho, K. J. Tak, and I. Moon "LNG: An eco-friendly cryogenic fuel for sustainable development", Applied Energy, vol. 88, pp. 4264-4273, 2011. https://doi.org/10.1016/j.apenergy.2011.06.035
  4. M. L. Andersen, N. B. Clausen, and P. C. Sames, Costs and Benefits of LNG as Ship Fuel for Container Vessels, Germanischer Lloyd and MAN, 2011.
  5. S. Wang and T. Notteboom, "The adoption of liquefied natural gas as a ship fuel: A Systematic review of perspectives and challenges", Transport Reviews, vol. 34, no. 6, pp. 749-774, 2014. https://doi.org/10.1080/01441647.2014.981884
  6. S. T. Yun, J. H. Ryu, S. W. Seo, S. I. Lee, H. Chung, Y. T. Seo, and D. J. Chang, "Conceptual design of an offshore LNG bunkering terminal: a case study of Busan Port", Journal of Marine Science and Technology, pp. 226-237, 2014.
  7. S. I. Lee, S. W. Seo, and D. J. Chang, "Fire risk comparison of fuel gas supply systems for LNG fuelled ships", Journal of Natural Gas Science and Engineering, pp. 1-8, 2015.
  8. S. I. Lee and D. J. Chang, "Safety systems design of VOC recovery process based on HAZOP and LOPA", Process Safety Progress, vol. 33, no. 4, pp. 339-344, 2014. https://doi.org/10.1002/prs.11662
  9. S. W. Seo, S. H. Han, S. I. Lee, and D. J. Chang, "A pump-free boosting system and its application to liquefied natural gas supply for large ships", Energy, pp. 1-10, 2015.
  10. Wartsila, Low-speed dual-fuel engines, http://www.wartsila.com/products/marine-oil-gas/engines-generating-sets/low-speed-dual-fuel-engines/, Accessed July 22, 2015.
  11. IMO, Interim Guidelines on Safety for Natural Gas-fuelled Engine Installations in Ships, Resolution MSC.285(86). ANNEX 11, 2009.
  12. IMO, IGC Code (International code for the construction and equipment of ships carrying liquefied gases in bulk), 2006.
  13. N. W. Kang, J. H. Park, C. H. Choung, and S. Na, "SIS design for fuel gas supply system of dual fuel engine based on safety integrity level", Journal of the Society of Naval Architechts of Korea, vol. 49, no. 6, pp. 447-460, 2012, https://doi.org/10.3744/SNAK.2012.49.6.447
  14. J. Spouge, "New generic leak frequencies for process equipment", Process Safety Progress, vol. 24, no. 4, pp. 249-257, 2005. https://doi.org/10.1002/prs.10100
  15. DNV, Leak help, version 3.3, 2011.
  16. TNO, Methods for the calculation of physical effects. 2005.
  17. Gexcon, FLACS v10.3 User's Manual, 2014.

Cited by

  1. Analysis of the Impact of Fire and Explosion Accidents due to LNG Leaks in the LNG Re-gasification Process vol.24, pp.6, 2018, https://doi.org/10.7837/kosomes.2018.24.6.825