• Title/Summary/Keyword: leaf rot

Search Result 187, Processing Time 0.023 seconds

Identification and Pathogenicity of Rhizoctonia solani Isolates Causing Leaf and Stem Rot in Three-Leaf Ladybell

  • Wan-Gyu Kim;Hyo-Won Choi;Gyo-Bin Lee;Weon-Dae Cho
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.377-383
    • /
    • 2023
  • In 2020 and 2021, we surveyed diseases of three-leaf ladybell (Adenophora triphylla) plants grown in fields at two locations in Korea. During the disease surveys, severe leaf rot symptoms were observed on the young plants in Hongseong, and stem rot symptoms on the adult plants in Cheolwon. The incidence of leaf rot was 5-60%, and that of stem rot 1-10%. We obtained 6 fungal isolates each from the leaf rot lesions and the stem rot lesions. All the isolates were morphologically identified as Rhizoctonia solani. Anastomosis test and investigation of cultural features of the fungal isolates revealed that the isolates from the leaf rot lesions corresponded to R. solani AG-1(IB), and those from the stem rot lesions to R. solani AG-2-2(IIIB). Two isolates each of R. solani AG-1(IB) and AG-2-2(IIIB) were used for DNA sequence analysis and pathogenicity test to three-leaf ladybell plants through artificial inoculation. The anastomosis groups and cultural types of the R. solani isolates were confirmed by the sequence analysis. The pathogenicity tests revealed that the isolates of R. solani AG-1(IB) caused only leaf rot symptoms on the inoculated plants, and those of R. solani AG-2-2(IIIB) leaf rot and stem rot symptoms. The induced symptoms were similar to those observed in the fields investigated. Leaf and stem rot of three-leaf ladybell caused by the two anastomosis groups and cultural types of R. solani is first reported in this study.

Didymella acutilobae sp. nov. Causing Leaf Spot and Stem Rot in Angelica acutiloba

  • Gyo-Bin Lee;Ki Deok Kim;Weon-Dae Cho;Wan-Gyu Kim
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.313-319
    • /
    • 2023
  • During disease surveys of Angelica acutiloba plants in Korea, leaf spot symptoms were observed in a field in Andong in July 2019, and stem rot symptoms in vinyl greenhouses in Yangpyeong in April 2020. Incidence of leaf spot and stem rot of the plants ranged from 10 to 20% and 5 to 30%, respectively. Morphological and cultural characteristics of fungal isolates from the leaf spot and stem rot symptoms fitted into those of the genus Phoma. Molecular phylogenetic analyses of two single-spore isolates from the symptoms using concatenated sequences of LSU, ITS, TUB2, and RPB2 genes authenticated an independent cluster from other Didymella (anamorph: Phoma) species. Moreover, the isolates showed different morphological and cultural characteristics in comparison to closely related Didymella species. These discoveries confirmed the novelty of the isolates. Pathogenicity of the novel Didymella species isolates was substantiated on leaves and stems of A. acutiloba through artificial inoculation. Thus, this study reveals that Didymella acutilobae sp. nov. causes leaf spot and stem rot in Angelica acutiloba.

Quality and Sensory Characteristics of Transgenic Perilla (Perilla frutescens) Overexpressing Rot 3 gene (형질전환 들깨잎의 품질 및 관능적 특성)

  • Lee, Hyeon-Suk;Kim, Kyung-Tae;Sohn, Jae-Keun;Kim, Kyung-Min
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.111-115
    • /
    • 2006
  • This study was carried out to establish genetic transformation of Rot 3 gene into perilla plants and to evaluate aromatic compounds, brightness, anthocyanin contents and leaf index in Rot 3 overexpressing transgenic lines. Rot 3 transmitted successfully from T$_1$ to T$_2$ generation showing stable gene expression. It revealed that there was no difference between transgenic and non-transgenic plants in major agronomic characteristics of progeny analysis. There was not much difference in aromatic compounds and leaf brightness did not showed variations between transgenic and non-transgenic, but leaf index was distinguished, respectively.

MACROPHYLLA/ROTUNDIFOLIA3 gene of Arabidopsis controls leaf index during leaf development (잎의 발달단계의 leaf index를 조절하는 애기장대 MACROPHYLLA/ROTUNDIFOLIA3 유전자)

  • Jun, Sang-Eun;Chandrasekhar, Thummala;Cho, Kiu-Hyung;Yi, Young-Byung;Hyung, Nam-In;Nam, Jae-Sung;Kim, Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.285-292
    • /
    • 2011
  • In plants, heteroblasty reflects the morphological adaptation during leaf development according to the external environmental condition and affects the final shape and size of organ. Among parameters displaying heteroblasty, leaf index is an important and typical one to represent the shape and size of simple leaves. Leaf index factor is eventually determined by cell proliferation and cell expansion in leaf blades. Although several regulators and their mechanisms controlling the cell division and cell expansion in leaf development have been studied, it does not fully provide a blueprint of organ formation and morphogenesis during environmental changes. To investigate genes and their mechanisms controlling leaf index during leaf development, we carried out molecular-genetic and physiological experiments using an Arabidopsis mutant. In this study, we identified macrophylla (mac) which had enlarged leaves. In detail, the mac mutant showed alteration in leaf index and cell expansion in direction of width and length, resulting in not only modification of leaf shape but also disruption of heteroblasty. Molecular-genetic studies indicated that mac mutant had point mutation in ROTUDIFOLIA3 (ROT3) gene involved in brassinosteroid biosynthesis and was an allele of rot3-1 mutant. We named it mac/rot3-5 mutant. The expression of ROT3 gene was controlled by negative feedback inhibition by the treatment of brassinosteroid hormone, suggesting that ROT3 gene was involved in brassinosteroid biosynthesis. In dark condition, in addition, the expression of ROT3 gene was up-regulated and mac/rot3-5 mutant showed lower response, compare to wild type in petiole elongation. This study suggests that ROT3 gene has an important role in control of leaf index during leaf expansion process for proper environmental adaptation, such as shade avoidance syndrome, via the control of brassinosteroid biosynthesis.

Stem and Leaf Rot of Tomato Caused by Boeremia linicola

  • Lee, Gyo-Bin;Oh, Taek-Hyeon;Ryu, Jae-Taek;Kim, Wan-Gyu
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.108-111
    • /
    • 2022
  • In December 2020, stem and leaf rot symptoms in small-fruited tomato (Solanum lycopersicum) plants were observed in a farmer's vinyl greenhouse located in Pyeongtaek, Gyeonggi Province, Korea. The incidence of diseased plants in the vinyl greenhouse was 2-6%. Seven single-spore isolates of Phoma sp. were obtained from the diseased stems and leaves. All the isolates were identified as Boeremia linicola based on the cultural, morphological and molecular characteristics. Two isolates of B. linicola were tested for pathogenicity on stems and leaves of small-fruited tomato and large-fruited tomato using artificial inoculation. All the tested isolates caused stem and leaf rot symptoms in the inoculated plants. The symptoms were similar to those observed in plants from the vinyl greenhouse investigated. This is the first report of B. linicola causing stem and leaf rot in tomato.

Incidence Rates of Major Diseases of Kiwiberry in 2015 and 2016

  • Kim, Gyoung Hee;Kim, Deok Ryong;Park, Sook-Young;Lee, Young Sun;Jung, Jae Sung;Koh, Young Jin
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.434-439
    • /
    • 2017
  • Incidence rates of diseases in kiwiberry orchards were investigated monthly from late June to late September in Gwangyang and Boseong in 2015 and 2016. The impact of postharvest fruit rot was investigated during ripening after harvest. Bacterial canker was only observed on one single tree in 2015, but black rot, powdery mildew, leaf spot and blight, and postharvest fruit rot diseases were problematic throughout the study period in both 2015 and 2016. Incidence rates of the diseases varied with kiwiberry cultivar, region and sampling time. Incidence rates of powdery mildew, leaf spot and blight diseases increased significantly during the late growing stages near fruit harvest, while black rot peaked in late August. Incidence rate of postharvest fruit rot on fruit without fruit stalks was less than half of fruit with fruit stalks, regardless of kiwiberry cultivars. Among the four cultivars, Mansu was relatively resistant to black rot and postharvest fruit rot diseases. In our knowledge, this is the first report of various potential pathogens of kiwiberry in Korea.

Growth Promoting Rhizospheric and Endophytic Bacteria from Curcuma longa L. as Biocontrol Agents against Rhizome Rot and Leaf Blight Diseases

  • Vinayarani, G.;Prakash, H.S.
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.218-235
    • /
    • 2018
  • Plant growth promoting rhizobacteria and endophytic bacteria were isolated from different varieties of turmeric (Curcuma longa L.) from South India. Totally 50 strains representing, 30 PGPR and 20 endophytic bacteria were identified based on biochemical assays and 16S rDNA sequence analysis. The isolates were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric, by dual culture and liquid culture assays. Results revealed that only five isolates of PGPR and four endophytic bacteria showed more than 70% suppression of test pathogens in both assays. The SEM studies of interaction zone showed significant ultrastructural changes of the hyphae like shriveling, breakage and desication of the pathogens by PGPR B. cereus (RBacDOB-S24) and endophyte P. aeruginosa (BacDOB-E19). Selected isolates showed multiple Plant growth promoting traits. The rhizome bacterization followed by soil application of B. cereus (RBacDOB-S24) showed lowest Percent Disease Incidence (PDI) of rhizome rot and leaf blight, 16.4% and 15.5% respectively. Similarly, P. aeruginosa (BacDOB-E19) recorded PDI of rhizome rot (17.5%) and leaf blight (17.7%). The treatment of these promising isolates exhibited significant increase in plant height and fresh rhizome yield/plant in comparison with untreated control under greenhouse condition. Thereby, these isolates can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.

Leaf Spot and Stem Rot on Wilford Swallowwort Caused by Stemphylium lycopersici in Korea

  • Hong, Sung Kee;Choi, Hyo Won;Lee, Young Kee;Shim, Hong Sik;Lee, Sang Yeob
    • Mycobiology
    • /
    • v.40 no.4
    • /
    • pp.268-271
    • /
    • 2012
  • In June 2012, leaf spot and stem rot were observed on Wilford Swallowwort plants grown in Cheonan, Korea. Three fungal isolates obtained from the diseased leaves and stems were identified as Stemphylium lycopersici, based on morphological, cultural, and molecular characteristics and pathogenicity. This is the first report of leaf spot and stem rot on Wilford Swallowwort caused by S. lycopersici.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.137-142
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wildtype ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim, Gyung-Tae
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.49-55
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wild-type ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

  • PDF