DOI QR코드

DOI QR Code

Didymella acutilobae sp. nov. Causing Leaf Spot and Stem Rot in Angelica acutiloba

  • Gyo-Bin Lee (Global Agro-Consulting Corporation) ;
  • Ki Deok Kim (Laboratory of Plant Disease and Biocontrol, College of Life Sciences and Biotechnology, Korea University) ;
  • Weon-Dae Cho (Global Agro-Consulting Corporation) ;
  • Wan-Gyu Kim (Global Agro-Consulting Corporation)
  • Received : 2023.07.31
  • Accepted : 2023.08.28
  • Published : 2023.10.31

Abstract

During disease surveys of Angelica acutiloba plants in Korea, leaf spot symptoms were observed in a field in Andong in July 2019, and stem rot symptoms in vinyl greenhouses in Yangpyeong in April 2020. Incidence of leaf spot and stem rot of the plants ranged from 10 to 20% and 5 to 30%, respectively. Morphological and cultural characteristics of fungal isolates from the leaf spot and stem rot symptoms fitted into those of the genus Phoma. Molecular phylogenetic analyses of two single-spore isolates from the symptoms using concatenated sequences of LSU, ITS, TUB2, and RPB2 genes authenticated an independent cluster from other Didymella (anamorph: Phoma) species. Moreover, the isolates showed different morphological and cultural characteristics in comparison to closely related Didymella species. These discoveries confirmed the novelty of the isolates. Pathogenicity of the novel Didymella species isolates was substantiated on leaves and stems of A. acutiloba through artificial inoculation. Thus, this study reveals that Didymella acutilobae sp. nov. causes leaf spot and stem rot in Angelica acutiloba.

Keywords

Acknowledgement

This study was supported by a research grant (PJ014507012020) from the Rural Development Administration, Korea.

References

  1. Plants of the World Online. Angelica acutiloba (Siebold & Zucc.) Kitag. [Internet]. Kew: Royal Botanic Gardens; 2022 [cited 2022 Aug 8]. Available from: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:837548-1
  2. Takeda Chemical Industries. List of plants. Ichijoji: Kyoto Herbal Garden, Pharmacognostic Research Lab., Central Research Division, Takeda Chem. Industries, Ltd.; 1978.
  3. Boerema GH, De Gruyter J, Noordeloos ME, et al. Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. Oxfordshire: CABI Publishing; 2004.
  4. Aveskamp MM, De Gruyter J, Crous PW. Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers. 2008;31:1-18.
  5. De Gruyter J, Aveskamp MM, Woudenberg JHC, et al. Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycol Res. 2009;113:508-519. doi: 10.1016/j.mycres.2009.01.002.
  6. Aveskamp MM, De Gruyter J, Woudenberg JHC, et al. Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol. 2010;65:1-60. doi: 10.3114/sim.2010.65.01.
  7. Chen Q, Jiang JR, Zhang GZ, et al. Resolving the Phoma enigma. Stud Mycol. 2015;82(1):137-217. doi: 10.1016/j.simyco.2015.10.003.
  8. Chen Q, Hou LW, Duan WJ, et al. Didymellaceae revisited. Stud Mycol. 2017;87(1):105-159. doi: 10.1016/j.simyco.2017.06.002.
  9. Hou LW, Groenewald JZ, Pfenning LH, et al. The phoma-like dilemma. Stud Mycol. 2020;96:309-396. doi: 10.1016/j.simyco.2020.05.001.
  10. Database of plant diseases in Japan [Internet]. The Phytopathological Society of Japan; 2023 [cited 2023 Jul 25]. Available from: https://www.gene.affrc.go.jp/databases-micro_pl_diseases_en.php
  11. List of plant diseases in Korea [Internet]. Korean Society of Plant Pathology; 2023 [cited 2023 Jul 25]. Available from: http://genebank.rda.go.kr/kplantdisease.do
  12. Park M-J, Lee H, Ryoo R, et al. A rapid and universal direct PCR method for macrofungi. Kor J Mycol. 2021;49:455-467.
  13. Rehner SA, Samuels GJ. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res. 1994;98(6):625-634. doi: 10.1016/S0953-7562(09)80409-7.
  14. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238-4246. doi: 10.1128/jb.172.8.4238-4246.1990.
  15. De Hoog GS, Gerrits van den Ende AHG. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses. 1998;41(5-6):183-189. doi: 10.1111/j.1439-0507.1998.tb00321.x.
  16. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al., editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-322.
  17. Woudenberg JHC, Aveskamp MM, De Gruyter J, et al. Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia. 2009;22(1):56-62. doi: 10.3767/003158509X427808.
  18. Sung G-H, Sung J-M, Hywel-Jones NL, et al. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol. 2007;44(3):1204-1223. doi: 10.1016/j.ympev.2007.03.011.
  19. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Mol Phylogenet Evol. 1999; 16(12):1799-1808. doi: 10.1093/oxfordjournals.molbev.a026092.
  20. Chen Q, Bakhshi M, Balci Y, et al. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol. 2022;101(1):417-564. doi: 10.3114/sim.2022.101.06.
  21. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797. doi: 10.1093/nar/gkh340.
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. doi: 10.1093/molbev/msw054.
  23. Swofford DL. PAUP: phylogenetic analysis using parsimony (and other methods) Version 4.0a. Sunderland: Sinauer Associates; 2003.
  24. Nylander JAA. MrModeltest version 2.4. Uppsala: Evolutionary Biology Centre; 2004.
  25. Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Syst Biol. 2012;61(3):539-542. doi: 10.1093/sysbio/sys029.
  26. Rambaut A. FigTree version 1.4.4. Edinburgh: Institute of Evolutionary Biology; 2018.
  27. De Gruyter J, Noordeloos ME, Boerema GH. Contributions towards a monograph of Phoma (Coelomycetes) - I. 2. Section Phoma: additional taxa with very small conidia and taxa with conidia up to 7 lm long. Persoonia. 1993;15:369-400.
  28. Chen Q, Zhang K, Zhang G, et al. A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China. Phytotaxa. 2015;197(4):267-281. doi: 10.11646/phytotaxa.197.4.4.