• Title/Summary/Keyword: leaf relative growth rate

Search Result 151, Processing Time 0.024 seconds

Growth Characteristic of Warm-season Turfgrass in Saemangeum Reclaimed Land (새만금간척지에서 난지형 잔디의 생육 특성)

  • Bae, Eun-Ji;Han, Jeong-Ji;Lee, Kwang-Soo;Park, Yong-Bae;Choi, Su-Min
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.13-23
    • /
    • 2016
  • This study was conducted to investigate the growth characteristics of warm-season turfgrasses and to find out suitable turfgrass species on Saemangeum reclaimed land. Twenty native zoysiagrass(Zoysia sinica, Z. matrella, Z. japonica, Medium-leaf type zoysiagrass(hybrid zoysiagrass)) and bermudagrass(Cynodon dactylon) collected from Korea were used in this study. Total stolon length and the number of stolon per square meter, relative growth rate of shoot and stolon, and coverage rate were analyzed for 2 year. C. dactylon showed not only the most growth response with high relative growth rate of shoot and stolon, which were 19.9% and 66.3%, but also resulted in higher level of turf visual quality compared to others. Whereas Z. japonica showed the least growth response with low relative growth rate of shoot and stolon, which were 2.4% and 0.7%. Although all warm-season turfgrasses took root and grew up well, there were different growth rates between the interspecies. Z. sinica 'Z2034', Z. matrella 'Z4091', Z. japonica 'Z1064', Medium-leaf type zoysiagrass 'ZN6019' and C. dactylon 'BN7014' were the greatest growth rate of shoot and stolon. These results will be useful for selecting salt tolerant breeding lines and also used to develop a turfgrass cultivar with strong salinity tolerance through continuous monitoring.

Characteristics of Photosynthesis and Leaf Growth of Peucedanum japonicum by Leaf Mold and Shading Level in Forest Farming (임간재배지 내 부엽토 및 차광수준에 따른 갯기름나물의 광합성과 엽생장 특성)

  • Song, Ki Seon;Jeon, Kwon Seok;Choi, Kyu Seong;Kim, Chang Hwan;Park, Yong Bae;Kim, Jong Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • This study was carried out in order to investigate the photosynthesis response and leaf characteristics of Peucedanum japonicum growing in forest farming. The experiment was performed by leaf mold (pine tree and chestnut tree) and shading levels (0%, 35%, 50% and 75% shading). Light relative intensity was 100% (full sunlight), 60.3% (35% shading), 35.1% (50% shading), and 17.4% (75% shading) respectively. Light response curves of pine-leaf mold and chestnut-leaf mold were the highest in control (full sunlight) and these were getting lower in the higher shading level. Photosynthesis capacity and light saturation point were indicated higher in chestnut-leaf mold within the same shading level. As the shading level increased, maximum photosynthesis rate decreased. And apparent quantum yield was not indicated statistically significant difference from all treatment. Leaf area, leaf length and leaf width were significant higher in 35% shading and control under chestnut-leaf mold in all treatment. As the shading level increased, LAR (leaf area ratio), SLA (specific leaf area) and SPAD value decreased in pine-leaf mold and chestnut-leaf mold. As a result of surveying the whole experiment, P. japonicum is judged better growth and higher yield by maintaining 35% shading (relative light intensity 60%) under chestnut-leaf mold in forest farming.

Response of Soybean Growth to Elevated $CO_{2}$ Conditions

  • Kim Young-Guk;Lee Jae-Eun;Kim Sok-Dong;Shin Jin-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.303-309
    • /
    • 2006
  • The study examined the effects of $CO_2$ enrichment on growth of soybean (Glycine max). Two soybean varieties were used, Taekwang and Cheongja. The plants were grown in growth chambers with a 12-h photoperiod and a day/night temperature of $28/21^{\circ}C$ at the seedling stage and $30/23^{\circ}C$ from the flowering stage. The plants were exposed to the two elevated $CO_2$ levels of 500 and 700 ppm and the ambient level of 350 ppm. Results of the experiment showed that at the second-node trifoliate stage of the two varieties, the elevated $CO_2$ increased plant height, leaf area and dry weight. The elevated $CO_2$ also raised the photosynthetic rate of soybean as compared to the ambient level. From the beginning bloom stage to the full maturity stage of the two varieties, the elevated $CO_2$ increased plant height, leaf area, seed weight and photosynthetic rate. The stomatal conductance and transpiration rate decreased on long days relative to short days of treatment. Through the entire stages, the elevated $CO_2$ increased the water use efficiency of soybean plants because stomatal conductance and transpiration rate decreased at the elevated $CO_2$ levels relative to the ambient level.

Comparison of Growth Performances in Seedling of Allium microdictyon Prokh. and Allium ochotense Prokh. (산마늘과 울릉산마늘 유묘의 생장특성 비교)

  • Lee,K.C.;Kim,H.S.;Han,S.K.;Lee,K.M.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.19 no.1
    • /
    • pp.129-137
    • /
    • 2017
  • This study was conducted to investigate of growth performances and net assimilation rate(NAR) of Allium microdictyon Prokh. distributed inland and Allium ochotense Prokh. originated Ulleung-do. The Allium microdictyon on the growth of 1-2 years showed the largest relative growth rate, and showed high relative growth from three to four years. Allium ochotense on the growth from one year to three years showed high relative growth rate. The T/R rate of Allium ochotense of 2~5years was in the range of 0.4~0.5. However, The T/R rate of Allium microdictyon was increased as increasing with age. This implies that Allium microdictyon was consumed more energy on growing subterranean part. The LWR of 1~3years old Allium ochotense. was showed more smaller than 4~5years old. It seems that the growth characteristics of Allium ochotense 1-3 years after sowing the leaf growth consume more energy than Allium microdictyon. Net assimilation rate(NAR) of Allium ochotense for 1-3 years after sowing was higher than that of Allium microdictyon. In this time, the material of Allium ochotense has a higher production efficiency can be seen indirectly.

Growth Characteristics of Trees following Different Types of Cutting in Quercus acutissima Stand (상수리나무 임분 내에서 벌채 유형에 따른 조림목의 생장 특성)

  • Shin, Yu-Seung;Song, Sun-Hwa;Yang, A-Ram;Hwang, Jaehong;Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1075-1083
    • /
    • 2014
  • The objective of this study was to evaluate the effect of cutting types on microclimate and growth characteristics of afforested tree in Quercus acutissima stand after different types of cutting. The difference in temperature reaching $5.2^{\circ}C$ was shown in between clear cutting and selective cutting treatments. On July and August days with temperatures more than $35^{\circ}C$ often appeared in clear cutting stand. The values of VPD in July and August were higher than those in other months. Maximum VPD of 3.99 kPa was shown in clear cutting stand on May 23 as a prolonged rainless days appeared. However, VPD in selective cutting stand always stayed under 3.0 kPa throughout growing season. A higher intensity was shown in clear cutting and strip clear cutting stands, reaching to more than $1,600{\mu}mol\;m^{-2}s^{-1}$ at midday on early August, while that in selective cutting stand stayed about 1,500. In relative growth rate selective cutting stand showed a significantly higher relative growth rate in plant height than those in other cutting stands (p<0.05). The number of leaf in current-year branches significantly increased in selective cutting stand, whereas no increase was shown in clear cutting and strip clear cutting stands (p<0.05). In addition, relative elongation rate of current year branch also showed higher values in selective cutting stand compared with that in strip clear cutting stand (p<0.05). However, leaf mass per unit area (LMA) was higher in order of strip clear cutting, clear cutting, and selective cutting stands. From these results it is concluded that environmental conditions in clear cutting and strip clear cutting stands during growing season are more stressful to afforested tree species, resulting in lower relative growth in plant height, elongation of current-year branches, and leaf number per branch compared with those in selective cutting stand. Consequently, more data must be accumulated in the field to find out best cutting type in plantation considering the adaptational characteristic of each tree species varies with species and life span of tree is long.

Effect Analysis of Compost Derived by Black Soldier Fly(Hermetia illucens L.) Using Plant Growth Analysis Method (식물성장해석 기법을 이용한 아메리카동애등에(Hermetia illucens L.) 분변토의 비료효과 분석)

  • Choi, Young-Cheol;Park, Kwan-Ho;Lee, Yonggu;Moon, Sung-Kyoung;Choi, Hansu
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • The black soldier fly larvae are able to decompose various organic wastes such as livestock manures and food wastes. We tested whether the quality of the insect derived compost, i.e. larval feces, was comparable to that of a commercial fertilizer. Chemical analysis of Hermetia. illucens compost was suitable as a fertilizer. When the kidney bean (Phaseolus vulgaris L.) was raised on the culture soil treated with the H. illucens compost, the growth of leaf area, total dry weight and leaf dry weight increased significantly. The H. illucens compost is thought to act as an increasing factor of RGR (relative growth rate) from the beginning of growth and also had a great effect on the relative growth rate throughout the late stage of growth. There is high statistical significance between NAR (net assimilation rate) and RGR (relative growth rate), but no significance between RGR and LAR (leaf assimilation rate) of the treatments. In addition, the treatment of H. illucens compost promoted the thickness of leaves from the beginning of growth and the tendency of thickening leaves from the beginning of growth and the effect continued throughout the late period of growth. When mixed with 50% of H. illucens compost rather than 25%, it showed the greater effect on the plant growth.

Phenological Changes of Wheat Cultivars with Plant Type and Plant Spacing

  • Lee Choon-Woo;Baek Seong-Bum;She Sea-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.5
    • /
    • pp.332-335
    • /
    • 2005
  • The three Korean wheat cultivars with different plant types; the erect, the middle and the creeping growth habit, were studied for their utilization to solar radiation, temperature changes on the furrow and to provide optimum planting space for producing the high yield in 2003. The average solar radiation rate was lowest for creeping type ($39.2\%$) and highest for erect type ($75.8\%$) The correlation coefficient between the coverage rate and the solar transmission rate was r = 0.8624 which was significant at $5\%$ level. The relative growth of the plant, tiller rate and leaf size was increased in the erect and the middle type at lower plant density, while no change on plant growth at creeping type regardless of plant density. The increase of leaf size in the lower plant density was due to longer flag and the first leaf than those of other plant types. The temperature on the furrow of growing plants was changed by the canopy. The changes in temperature pattern on the furrow according to plant types during winter season was different compared to the non plant ground. The temperature of the nonplant ground was the lowest due to solar reduction increasing the amount of cool air flowing in the furrow.

Characterization of the host reaction of some citrus plants with Xanthomonas axonopodis pv. citri, causing citrus bacterial canker disease.

  • Myung, Inn-Shik;Hyun, Jae-Wook;Kim, Kwang-Sik;Lee, Sung-Chan;Lim, Han-Chul
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.120.3-121
    • /
    • 2003
  • Relative degree of resistance of citrus to Xanthomonas axonopodis pv. citri, the causal bacterium of canker, was investigated. Growth rate of a bacterium in leaf tissues after infiltration, disease incidence, and percent of lesion area were compared. By using growth rate[(GR=(At - A$\sub$t-1/)/A$\sub$t-1] host plants were differentiated into susceptible and resistant. Growth rates reached to peak at 40 hrs after inoculation and then declined. The growth rate in leaf tissues of a moderately susceptible cultivar, Citrus sinensis vu. Lane late(sweet orange), was the highest, and those of C. unshiu ${\times}$ C. sinensis(kiyomi), C. junos(yuzu), [(Citrus. unshiu x C. sinensis) x C. reticulata] (shiranuhi), and C. unshiu(satuma mandarin) were similar. This result indicates that the growth rate of the bacterium in leaf tissues can be effectively used for evaluation of disease resistance for citrus plants to X. axonopodis pv. citri. The disease on sweet orange occurred earlier than relatively resistant citrus plants tested. The percent of lesion area on leaf was also higher in sweet orange than those of satsuma mandarin, shiranuhi and kiyomi, and yuzu. The disease severity was highest on sweet orange and followed by kiyomi, shiranuhi, satsuma mandarin, and yuzu.

  • PDF

Qualities and Early Growth Responses of Paprika Seedlings Grown in High and Low Temperatures (고온 및 저온에서 육묘된 파프리카 묘의 소질과 정식 후 초기 생육 반응)

  • Cho, Yun-Hee;Kim, Chi-Seon;Kim, Jeong-Man;Ku, Yang Gyu;Kim, Ho Cheol
    • Horticultural Science & Technology
    • /
    • v.34 no.5
    • /
    • pp.719-726
    • /
    • 2016
  • The effect of high and low temperatures on seedling quality while raising of paprika (Capsicum annuum L.) seedlings, and their early development after planting was investigated. The control raising seedling temperature (RST) was $23^{\circ}C$; high temperature, $31^{\circ}C$; and low temperature, $15^{\circ}C$ throughout the raising seedling period. At $15^{\circ}C$ and $30^{\circ}C$, plant height, stem diameter, fresh weight, dry weight, number of leaves, and seedling leaf area were significantly lower than those at $23^{\circ}C$. At 4 weeks after planting, seedling's growth characteristics showed a similar pattern. Compared to $23^{\circ}C$, seedlings raised at $15^{\circ}C$ and $30^{\circ}C$ had an increased dry weight and leaf area per unit time after planting than during the seedling raising period. At 4 weeks after planting, crop growth rate and leaf area index were unaffected by RST, and relative growth rate and net assimilation rate at RSTs of $15^{\circ}C$ and $31^{\circ}C$ were higher than those those at RST of $23^{\circ}C$. At an RST of $15^{\circ}C$, growth speed and net assimilation rates were higher after planting than before planting, according to increased photosynthetic rate. Thus, high and low temperatures during the seedling raising period significantly reduced seedling growth and plant growth after planting. After planting, seedlings raised at $15^{\circ}C$ recovered more quickly than did those raised at $31^{\circ}C$.

Growth and Photosynthetic Responses of One C3 and Two C4 Chenopodiaceae Plants to Three CO2 Concentration Conditions

  • Ishikawa, Shin-Ichi
    • Journal of Ecology and Environment
    • /
    • v.31 no.4
    • /
    • pp.261-267
    • /
    • 2008
  • Growth and photosynthetic responses of one $C_3$ and two $C_4$ plants in the family Chenopodiaceae in three $CO_2$ concentration $([CO_2])$ conditions-low (about $243{\mu}mol\;mol^{-1}$, LC), present (about 378, PC), and high (about 465, HC)-were investigated in open top chambers. The relative growth rate (RGR) and net assimilation rate in the $C_3$ plant, Chenopodium album, increased with increasing $[CO_2]$, though the RGR was not enhanced significantly in the HC condition. The leaf area ratio and leaf weight ratio of the $C_3$ plant drastically decreased with increasing $[CO_2]$, suggesting that the $C_3$ plant invests more biomass to leaves in lower $[CO_2]$ conditions. The two $C_4$ plants, Atriplex glauca and A. lentiformis, showed relatively small changes in those growth parameters. These photosynthetic-pathway-dependent responses suggest that growth patterns of $C_3$ and $C_4$ plants have been altered by past increases in atmospheric $[CO_2]$ but that there will be relatively little further alteration in the future high-$CO_2$ world.