• Title/Summary/Keyword: leaf inoculation

Search Result 315, Processing Time 0.029 seconds

Comparison of Resistance Level to Cotton leaf curl virus(CLCuV) Among Newly Developed Cotton Mutants and Commercial Cultivars

  • Akhtar, Khalid P.;Khan, Azeem I.;Hussain, M.;Khan, M.S.I.
    • The Plant Pathology Journal
    • /
    • v.18 no.4
    • /
    • pp.179-186
    • /
    • 2002
  • Four newly developed cotton mutants (M-111, M-7662, M-358 and M-218) were compared for their resistance against Cotton leaf curl virus(CLCuV) together with commercial resistant (CIM-443, CIM-482, CIM-473, FH-900 and FH-901) and susceptible (5-12) varieties by artificial inoculation through grafting and under natural field conditions. Infectivity and success of grafting were 100% in all cases. None of the grafted plants were found immune or asymptomatic. All the grafted mutants and most of their single plant progeny rows (SPPRs) showed highly resistant responses as the symptoms displayed by these mutants were milder than the commercial cultivars. Grafted mutants also had delayed disease reactions as they took more time (25-30 days) to produce disease symptoms, as compared with resistant commercial varieties that produced disease 18-22 days after inoculation. Growth of the grafted SPPRs of tested mutants was normal, which is an indication that there will be no production losses. Observations under natural infestation of whitefly showed that two SPPRs of M-ll/CE and M-7662-1/2 and one resistant variety CIM-443 exhibited slight incidence of disease, while one SPPR of M-l1/59 and S-12 were moderately susceptible and highly susceptible with 21% and 97.l% disease incidence, respectively. This study also showed that plants displaying more disease symptoms through grafting were easily infected under natural conditions. These results suggest that preference should be given to those plants that exhibited highly resistant responses after artificial inoculation.

Screening Rice Cultivars for Resistance to Bacterial Leaf Blight

  • Fred, Agaba Kayihura;Kiswara, Gilang;Yi, Gihwan;Kim, Kyung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.938-945
    • /
    • 2016
  • Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious threats to rice production. In this study, screening of rice for resistance to BLB was carried out at two different times and locations; that is, in a greenhouse during winter and in an open field during summer. The pathogenicity of Xoo race K1 was tested on 32 Korean rice cultivars. Inoculation was conducted at the maximum tillering stage, and the lesion length was measured after 14 days of inoculation. Five cultivars, Hanareum, Namcheon, Samgdeok, Samgang, and Yangjo, were found to be resistant in both the greenhouse and open-field screenings. Expression of the plant defense-related genes JAmyb, OsNPR1, OsPR1a, OsWRKY45, and OsPR10b was observed in resistant and susceptible cultivars by qRT-PCR. Among the five genes tested, only OsPR10b showed coherent expression with the phenotypes. Screening of resistance to Xoo in rice was more accurate when conducted in open fields in the summer cultivation period than in greenhouses in winter. The expression of plant defense-related genes after bacterial inoculation could give another perspective in elucidating defense mechanisms by using both resistant and susceptible individuals.

Disease Severity of Angular Leaf Spot Disease by Different Inoculation Method and Eco-Friendly Control Efficacy in Strawberry. (접종방법에 따른 딸기모무늬병원균의 발병도 검증 및 친환경 방제 효과)

  • Kim, Da-Ran;Gang, Gun-hye;Cho, Hyun-ji;Yoon, Hae-Suk;Myoung, In Sik;kwak, Youn-Sig
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • Recently, bacterial angular leaf spot disease, caused by Xanthomonas fragariae, causes severe damage in strawberry production and its' export to other countries, since the pathogen has been classified as an A2 quarantine pathogen. Typical the Angular Leaf Spot (ALS) disease represent that water-soaked angular spots symptoms, bacteria ooze exudate under relatively high humidity condition and later the spot become reddish brown on the leaf surface. The pathogen disseminated by irrigation water, infected mother plant and farmer's hand. In this study, we reported that rubbing inoculation method showed more effective in the pathogen dissemination than infiltration with needles, regardless the strawberry cultivars. Additionally, Dichloroisocyanurate (NaDCC) treatment in commercial strawberry fields provided reliable efficiency to reduce the bacterial angular leaf spot disease incidency and severity.

Virus-induced Gene Silencing as Tool for Functional Genomics in a Glycine max

  • Jeong, Rae-Dong;Hwang, Sung-Hyun;Kang, Sung-Hwan;Choi, Hong-Soo;Park, Jin-Woo;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.158-163
    • /
    • 2005
  • Virus-induced gene silencing (VIGS) is a recently developed gene transcript suppression technique for characterizing the function of plant genes. However, efficient VIGS has only been studied in a few plant species. In order to extend the application of VIGS, we examined whether a VIGS vector based on TRV would produce recognizable phenotypes in soybean. Here, we report that VIGS using the Tobacco rattle virus (TRV) viral vector can be used in several soybean cultivars employing various agro-inoculation methods including leaf infiltration, spray inoculation, and agrodrench. cDNA fragments of the soybean phytoene desaturase(PDS) was inserted into TRV RNA-2 vector. By agrodrench, we successfully silenced the expression of PDS encoding gene in soybean. The silenced phenotype of PDS was invariably obvious 3 weeks after inoculation with the TRV-based vector. Real-time RT-PCR analyses showed that the endogenous level of GmPDS transcripts was dramatically reduced in the silenced leaf tissues. These observations confirm that the silenced phenotype is closely correlated with the pattern of tissue expression. The TRV-based VIGS using agrodrench can be applied to functional genomics in a soybean plants to study genes involved in a wide range of biological processes. To our knowledge, this is the first high frequency VIGS method in soybean plants.

Evaluation of Shiranuhi, a Hybrid of Kiyomi Tangor and Nakano No.3 Ponkan, for Resistance to Citrus Canker in Growth Chamber

  • Myung, Inn-Shik;Hyun, Jae-Wook;Kim, Kwang-Sik;Lee, Seong-Chan;Lim, Han-Cheol
    • The Plant Pathology Journal
    • /
    • v.19 no.5
    • /
    • pp.253-256
    • /
    • 2003
  • Citrus canker disease is caused by bacteria Xanthomonas axonopodis .pv. Citri. Shiranuhi cultivar, a hybrid of Kiyomi tangor and Nakano No.3 ponkan was evaluated for resistance to citrus canker based on initiation of disease, percent area of lesion infected and growth rate of bacteria in the leaf under growth chamber condition. Significant differences between susceptible plant and resistant plants were observed in these assays. Resistant plants showed delayed disease symptoms compared to the susceptible plants after spray inoculation of the pathogen. The resistant verities, satsuma, yuzu, and Shiranuhi showed symptoms after six days where as susceptible, mexican lime showed the symptoms just after three days of inoculation. 18 days after inoculation, percent area of lesions developed on leaf and disease severity differed significantly in susceptible and resistant plants, and were ranked as follows: mexican lime > early satsuma =Shiranuhi =yuzu (P <, 0.01). However, 30 days after inoculation, percent area of lesion was further differentiated into resistant and highly resistant plants. That was ranked as follows: sweet orange> early satsuma =Shiranuhi =Kiyomi > yuzu (P < 0.01). These results indicate that host reaction to the bacterial was more distinct when the disease developed for a longer period. Growth rates of a citrus canker bacterium during 16 40 h also were distinct after infiltration into leaves of susceptible and resistant plants, and were ranked as follows: sweet orange> early satsuma =Shiranuhi =Kiyomi =yuzu (P < 0.01). Based on these results, we concluded that Shiranuhi is resistant to citrus canker as compared to Kiyomi, early satsuma, and yuzu.

Effect of pinewood nematode on the water content and early disease development of seedlings of susceptible Pinus densiflora and resistant Pinus × rigitaeda for breeding for resistance to pinewood nematode

  • Woo, Kwan-Soo;Yoon, Jun-Hyuck;Fins, Lauren;Lee, Do-Hyung;Koo, Yeong-Bon;Yeo, Jin-Kie
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.377-384
    • /
    • 2009
  • Three-year-old seedlings of susceptible Pinus densiflora and resistant Pinus x rigitaeda were each inoculated with the pinewood nematode, Bursaphelenchus xylophilus, to compare disease development. Needle dehydration was evident on seedlings of P. densiflora by 20 days after inoculation, 10 days earlier than this symptom was observed on P. ${\times}$ rigitaeda. Xylem drying was more frequent in seedlings of P. densiflora than in that of P. ${\times}$ rigitaeda between 20 and 60 days after inoculation. No significant differences were found between P. densiflora and P. ${\times}$ rigitaeda for stem water content or for stem and leaf relative water content in current-year branches after nematode inoculation, but the average number of B. xylophilus recovered from stems differed significantly between the two groups. The number of B. xylophilus recovered from stems was negatively correlated with the stem water content and with stem and leaf relative water content. By the time the experiment was terminated at 60 days after inoculation, all 3 of the last group of P. densiflora seedlings had died, but 2 of the 3 remaining P. ${\times}$ rigitaeda hybrid seedlings were still alive. Additional studies are needed to further explore the specific mechanisms preventing nematode multiplication in the seedlings of resistant P. ${\times}$ rigitaeda.

Effect of Gamma Irradiation and Its Convergent Treatments on Lily Leaf Blight Pathogen, Botrytis elliptica, and the Disease Development (감마선 및 화학 대체제 융복합 처리가 백합 잎마름병균 및 잎 절편 감염에 미치는 영향)

  • Kim, Ji-Hoon;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.20 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • Gamma irradiation and its convergence with nano-silver particles and sodium dichloroisocyanurate (NaDCC) were investigated to inhibit germination and mycelial growth of Botrytis elliptica, the pathogen of lily leaf blight. In addition, the same treatments were studied on the process of disease development with detached leaf of lily cv. Siberia. Spray inoculation, which is closer to natural infection than wound inoculation, can be a way to investigate infection ability of the treated pathogen. The irradiating dose required to reduce the population by 90%, $D_{10}$, was 526 Gy irradiating with 0-2000 Gy gamma ray on the conidial suspension as well as the growing mycelia. Even at 2000 Gy, the mycelium was not killed but just delayed its growth at 1-2 days behind. Convergent treatment with 40 mg/l of NaDCC just before 200 Gy gamma irradiation was the best way to decrease the conidial germination about 1/1000 times. The control values of gamma irradiation were 23% and 19.5% at wound inoculation and spray inoculation, respectively. On wound-inoculation, the control value of NaDCC only was 89%, and that of NaDCC convergent with 200 Gy gamma irradiation was 32%. On sprayinoculation, the highest control value was NaDCC at 50%, and that of NaDCC convergent with gamma irradiation was 24%.

Paddy Weeds Serving as the Possible Reservoirs for Rice Bacterial Leaf Blight (답잡초를 대상으로 벼 흰빛잎아름병 기주절위구명)

  • Kim, K.U.;Jeh, S.Y.;Sohn, J.K.;Lee, S.K.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.40-44
    • /
    • 1981
  • This study was conducted to identify the possibility of paddy weeds served as the host plant of bacterial leaf blight, using various bacterial groups and inoculation methods. The results obtained can be summarized as follows. 1. Alopecurns spp., Setaria viridis P. Beauv., and Leersia juponica Makino were identified the most susceptible to bacterial leaf blight, similar to Milyang 23 which was used as a susceptible check variety. The others such as Digitaria adscendens Hem., Eleusine indic aGaertin., Cyperns serotinus Rottb, Cyperns difformis L. showed slight infection but most of broadleaf weeds were resistant to bacterial leaf blight. 2. Weed species showing early susceptibility maintained their susceptibility throughout the growth stages. Group I of bacterial leaf blight was the most effective to develop infection symptom to weeds. 3. Pin and scissor inoculation methods were more effective mean for infection than spray method which was used without wound.

  • PDF

Leaf Spot of Rhubarb Caused by Didymella rhei in Korea

  • Lee, Gyo-Bin;Mo, Young-Moon;Cho, Weon-Dae;Kim, Wan-Gyu
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.555-560
    • /
    • 2021
  • During disease surveys conducted from 2019 to 2021 in Korea, leaf spot symptoms in rhubarb (Rheum rhabarbarum) plants were frequently observed in plants growing in fields located in Cheolwon, Taebaek, and Inje in Gangwon Province. The incidence of diseased leaves of the plants in the fields ranged from 2% to 80%. Nine single-spore isolates of Phoma sp. were obtained from lesions of the diseased leaves; all of them were identified as Didymella rhei based on their cultural, morphological, and molecular characteristics. Three isolates of D. rhei were tested for pathogenicity on rhubarb leaves using artificial inoculation. All the tested isolates caused leaf spot symptoms in the inoculated plants; the symptoms were similar to those observed in plants from the fields investigated. This is the first report of D. rhei causing leaf spot in rhubarb in Korea.

Stem and Leaf Rot of Tomato Caused by Boeremia linicola

  • Lee, Gyo-Bin;Oh, Taek-Hyeon;Ryu, Jae-Taek;Kim, Wan-Gyu
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.108-111
    • /
    • 2022
  • In December 2020, stem and leaf rot symptoms in small-fruited tomato (Solanum lycopersicum) plants were observed in a farmer's vinyl greenhouse located in Pyeongtaek, Gyeonggi Province, Korea. The incidence of diseased plants in the vinyl greenhouse was 2-6%. Seven single-spore isolates of Phoma sp. were obtained from the diseased stems and leaves. All the isolates were identified as Boeremia linicola based on the cultural, morphological and molecular characteristics. Two isolates of B. linicola were tested for pathogenicity on stems and leaves of small-fruited tomato and large-fruited tomato using artificial inoculation. All the tested isolates caused stem and leaf rot symptoms in the inoculated plants. The symptoms were similar to those observed in plants from the vinyl greenhouse investigated. This is the first report of B. linicola causing stem and leaf rot in tomato.