• Title/Summary/Keyword: leaf inoculation

Search Result 315, Processing Time 0.021 seconds

Occurrence of Phytophthora Root Rot on Kiwifruit in Korea

  • Lee, Yong-Hwan;Jee, Hyeong-Jin;Cha, Kwang-Hong;Ko, Sook-Joo;Park, Ki-Beum
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.154-158
    • /
    • 2001
  • A severe root rot of kiwifruit caused by a species of Phytophthora occurred in 1-to 5-year-old vines at the south coast region of Korea in 1997. Infected vines exhibited leaf chlorosis, scorch and defoliation, root and stem rot, and eventual death. The disease was relatively severe in poorly drained lowlands, of which 19 out of 23 fields were damaged by the disease. Meanwhile, only one among 58 upland fields was infected by the disease. Incidence of infected vines reached over 80% in heavily damaged fields and a species of Phytophthora was isolated from inner tissues of roots, stems, and rhizosphere soils of the plants. The causal pathogen was identified as P. drechsleri based on its mycological characteristics. Pathogenicity of the fungus was confirmed by artificial inoculation to seedlings of kiwifruit 'Hayward'. The pathogen was re-isolated from the inoculated plants showing symptoms similar to those observed in the fields. Root rot of kiwifruit caused by P. drechsleri has not been reported previously in Korea.

  • PDF

Peroxidase Activity in Leaf Tissue of Rice Infected by Pyricularia oryzae (도열병에 감염된 벼의 엽조직에서 Peroxidase의 활성)

  • Park Won Mok;Lee Yong Se;Park Sang Ho
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.178-183
    • /
    • 1985
  • The present researches were carried out to investigate the peroxidase activity in association with the reactions of the 4 cultivars of rice plant, Nagdong, Jinheung, Nongbaek and Taebaek to Pyricularia oryzae race KJ-I0l and KJ-301. Although the peroxidase activity was increased during the growth of the rice seedlings, the significant difference in the activity was not found among 4 cultivars. After inoculation of the fungus, the peroxidase activity was enhanced in diseased leaves, being considerably higher in the compatible than in the incompatible cultivars. The isozyme bands of peroxidases observed in mycelium of rice blast fungus were not found in the diseased leaves on the gel electrophoresis. The peroxidase activity was not affected by the increased application of nitrogenous fertilizer.

  • PDF

Changes in Amino Acid Content in Infected Leaves of Spring Barley Plants Resistant to Powdery Mildew at Adult- Plant Stage (흰가루병에 성체식물저항성을 지닌 봄보리의 감염잎에서 아미노산함량의 변화)

  • Hwang Byung Kook
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.165-168
    • /
    • 1985
  • Ethanol-soluble amino acids in healthy and powdery mildew-infected leaves of the susceptible cultivar Peruvian and the adult-plant-resistant cultivar Asse of spring barley were quantitatively analysed. At I day after inoculation, the levels of amino acids in the infected first leaves of the two cultivars were similar to those of comparable healthy controls. During sporulation, increases in amino acids were more pronounced in Peruvian than those in Asse. The changes in amino acid content in the infected first and fifth leaves were closely related to the number of colonies per leaf. The susceptible cultivar Peruvian showed higher amounts of amino acids in infected first and fifth leaves at all infection intensitives than did Asse.

  • PDF

Effect of Chemical Treatment on the Control of Strawberry Anthracnose caused by Colletotrichum sp. (딸기탄저병의 약제방제효과)

  • 김승한;최성용;임양숙;윤재탁;최부술
    • Research in Plant Disease
    • /
    • v.8 no.1
    • /
    • pp.50-54
    • /
    • 2002
  • A total of 55 Colletotrichum isolates from strawberry plants with anthracnose symptoms(crown rot) were inhibited in mycelial growth on potato-dextrose agar(PDA) amended with fungicides in variable degrees depending on the chemicals used, especially showing no growth on PDA with 1 mg/m/tricyclazole. However, in the detached leaf test by treating chemicals before or after inoculation of Colletotrichum sp., tricyclazole was little effective in controlling symptom development; instead azoxystrobin, which had low in vitro inhibition of mycelial growth, inhibited strongly the symptom development. Some chemicals were tested for the control of strawberry crown rot in greenhouse using three methods, sprays soil drenching and plant dipping. No or little control effect were made by chemical spray and soil drenching, but plant dipping in chemical solution, especially azoxystrobin: reduced crown rot development by about 50% in the greenhouse suggesting that the azoxystrobin treatment may be an effective control method of the crown rot of strawberry. No differences in the control efficacy were noted according to the dipping time and chemical concentration of azoxystrobin not less than 10 min and 250 mg/m/, respectively.

Occurrence of Web Blight in Soybean Caused by Rhizoctonia sol ani AG-l(IA) in Korea

  • Kim, Wan-Gyu;Hong, Sung-Kee;Han, Seong-Sook
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.406-408
    • /
    • 2005
  • Web blight symptoms were frequently observed on soybean plants grown in a farmer's fields located in Jincheon in Korea during a disease survey in August, 2005. Incidence of the disease was $5-20\%$ infected plants in two of four soybean fields investigated. A total of 31 isolates of Rhizoctonia sp. were obtained from leaves, leaf petioles, and pods of diseased soybean plants. The isolates were identified as Rhizoctonia solani AG-l(IA) by anastomosis test and based on the morphological and cultural characteristics. Three isolates of R. solani AG-l(IA) were tested for pathogenicity to five cultivars of soybean by artificial inoculation. All the isolates induced blight symptoms on the leaves of soybean and formed sclerotia on the lesions, which were similar to those observed in the field. The pathogenicity tests revealed that all the soybean cultivars tested were susceptible to the pathogen. There was no difference in the pathogenicity among the isolates. The present study first reveals that R. solani AG-l(IA) causes web blight of soybean in Korea.

Graft Transmission and Cytopathology of Pear Black Necrotic Leaf Spot (PBNLS) Disease

  • Nam, Ki-Woong;Kim, Kyung-Soo
    • The Plant Pathology Journal
    • /
    • v.18 no.6
    • /
    • pp.301-307
    • /
    • 2002
  • Graft transmission and cytopathological studies of a severe pear disease, pear black necrotic leafspot(PBNLS), were carried out to determine the causal agent of the disease. No evidence was found that a fungal or bacterial pathogen could be the causal agent of the disease. Attempts to transmit the agent by sap-inoculation to other plants including herbaceous hosts failed. How-ever, the pathogen was readily graft-transmitted from symptomatic diseased pears to healthy pears. Graft transmission of the pathogen was also demonstrated by using an indicator plant, PS-95, developed in the laboratory through various grafting methods. Ultrastructural study of the disease revealed the consistent presence of flexuous rod-shaped virus-like particles (VLP) in the symptomatic leaves of both Niitaka cultivar and indicator pear, PS-95. The particles, approximately 12 nm in diameter with undetermined length, occurred in the cytoplasm of mesophyll parenchyma cells. Cells with VLPs also contained fibril-containing vesicles, which are common in cells infected with plant viruses with ssRNA genome. The vesicles were formed at the tonoplast. Based on the symptomatology, the presence of fibril-containing vesicles, and graft-transmissibility, it is believed that the VLPs that occurred on symptomatic leaves of black necrotic leafspot of pear are viral in nature, possibly those of a capillovirus.

Colletotrichum spp. Agents of Anthracnose on Blueberry Leaves in Gangwon Province, Korea

  • Cho, Byung-Ju;Choi, Hyo-Won;Kim, DaeHo;Lee, JongKyu
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.2
    • /
    • pp.154-162
    • /
    • 2021
  • Blueberry, which produces phenolic compounds, is one of the most popular fruits in Korea. During a survey on blueberry diseases, 16 Colletotrichum isolates were obtained from blueberry leaves in Chuncheon and Gosung, Kangwon province, Korea. Using morphological and molecular analyses, the isolates were identified as Colletotrichum aenigma, C. fioriniae, C. fructicola, C. gloeosporioides, and C. nymphaeae. C. gloeosporioides was the most frequently isolated (11 isolates), and only one or two isolates of the other species were found. After inoculation with all isolates, those leaves and fruits with wounds easily developed anthracnose; whereas, fruits without wounds became infected but leaves without wounds were infected by only two of C. gloeosporioides. Typically, around seven fungicidal agents are used to control anthracnose on blueberries in Korea. Fluzinam and prochloraz manganese complex strongly (over than 80%) inhibited the growth of all Colletotrichum species, while dithianon and mancozeb only weakly (about 80% or less) inhibited their growth.

First Report of Melon Soft Rot Disease Caused by Pectobacterium brasiliense in Korea

  • Kyoung-Taek Park;Leonid N. Ten;Chang-Gi Back;Soo-Min Hong;Seung-Yeol Lee;Jeung-Sul Han;Hee-Young Jung
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.310-315
    • /
    • 2023
  • In May 2021, characteristic soft rot symptoms, including soft, watery, slimy, black rot, wilting, and leaf collapse, were observed on melon plants (Cucumis melo) in Gokseong, Jeollanam-do, Korea. A bacterial strain, designated KNUB-06-21, was isolated from infected plant samples, taxonomically classified, and phylogenetically analyzed using 16S rRNA and housekeeping gene sequencing. Strain KNUB-06-21 was also examined for compound utilization using the API ID 32 GN system and strain KNUB-06-21 was identified as Pectobacterium brasiliense. Subsequent melon stem inoculation studies using strain KNUB-06-21 showed soft rot symptoms similar to field plants. Re-isolated strains shared phenotypic and molecular characteristics with the original P. brasiliense KNUB-06-21 strain. To our knowledge, ours is the first report of P. brasiliense causing melon soft rot disease in Korea.

Pectobacterium brasiliense as a Causative Agent for Soft Rot of Radish in Korea

  • Kyoung-Taek Park;Soo-Min Hong;Chang-Gi Back;In-Kyu Kang;Seung-Yeol Lee;Leonid N. Ten;Hee-Young Jung
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.64-71
    • /
    • 2023
  • In October 2021, soft rot disease seriously affected radish crop in Dangjin, Chungcheongnam-do, Korea. The infected radishes were stunted and turned dark green, with yellowish leaf foliage. A slimy, wet, and decayed pith region was observed in the infected roots. The bacterial strain KNUB-03-21 was isolated from infected roots. The biochemical and morphological characteristics of the isolate were similar to those of Pectobacterium brasiliense. Phylogenetic analysis based on the sequences of the 16S rRNA region and the concatenated DNA polymerase III subunit tau (dnaX), leucine-tRNA ligase (leuS), and recombinase subunit A (recA) genes confirmed that the isolate is a novel strain of P. brasiliense. Artificial inoculation of radish with P. brasiliense KNUB-03-21 resulted in soft rot symptoms similar to those observed in infected radish in the field; subsequently, P. brasiliense KNUB-03-21 was reisolated and reidentified. To our knowledge, this is the first report of P. brasiliense as a causal pathogen of radish soft rot in Korea.

Proteomic and Phenotypic Analyses of a Putative YggS Family Pyridoxal Phosphate-Dependent Enzyme in Acidovorax citrulli

  • Lynn Heo;Yongmin Cho;Junhyeok Choi;Jeongwook Lee;Yoobin Han;Sang-Wook Han
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.235-244
    • /
    • 2023
  • Acidovorax citrulli (Ac) is a phytopathogenic bacterium that causes bacterial fruit blotch (BFB) in cucurbit crops, including watermelon. However, there are no effective methods to control this disease. YggS family pyridoxal phosphate-dependent enzyme acts as a coenzyme in all transamination reactions, but its function in Ac is poorly understood. Therefore, this study uses proteomic and phenotypic analyses to characterize the functions. The Ac strain lacking the YggS family pyridoxal phosphate-dependent enzyme, AcΔyppAc(EV), virulence was wholly eradicated in geminated seed inoculation and leaf infiltration. AcΔyppAc(EV) propagation was inhibited when exposed to L-homoserine but not pyridoxine. Wild-type and mutant growth were comparable in the liquid media but not in the solid media in the minimal condition. The comparative proteomic analysis revealed that YppAc is primarily involved in cell motility and wall/membrane/envelop biogenesis. In addition, AcΔyppAc(EV) reduced biofilm formation and twitching halo production, indicating that YppAc is involved in various cellular mechanisms and possesses pleiotropic effects. Therefore, this identified protein is a potential target for developing an efficient anti-virulence reagent to control BFB.