• Title/Summary/Keyword: leaf chlorophyll content

Search Result 506, Processing Time 0.023 seconds

Study on Physiological and Ecological Characteristics of Collective Varieties on Elephant food ( Amorphophallus Konjac K.) (구약감자 수집종의 생리생태적 특성)

  • 이희덕
    • Korean Journal of Plant Resources
    • /
    • v.10 no.4
    • /
    • pp.418-421
    • /
    • 1997
  • This research was performed to understand physiological and ecological characterisities and to de stable production by the way of the establishment of cultivation in elephant food. The results of the investigation of developmental characterisitics, leaf area, photosynthetic ability, chloroplast content for collective varieties are as follows. In the ecological characterisrics for five varieties of elephant food collected from domestic and foreign countries, appearance days for Japanese collective varieties was 60 days, which was two days earlier than domestic collective variety, Jechon collective variety. In appearance rate, Japanese collective variety was 90%, which was higher than Kumsan collective variety, 85%. In the development and yield of the ground portion, Japanese variety was the highest during all developmental period follwed by Chinese and Jechon collective varieties. The larger leaf area, the higher photosynthesis was found. In the amount of chlorophyll content, the higher intercepting light rate, the higher chlorophyll amount was found, which was 30, 50, 70% higher amount than non intercepting light rate.

  • PDF

Comparison of Morphological and Physiological Traits of Barley Varieties Bred Different Year (육성연대가 다른 보리 품종의 형태와 생리적 특성 및 수량성 비교)

  • 남윤일;하용웅
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.4
    • /
    • pp.412-418
    • /
    • 1985
  • Two fertilizer levels were treated to the nine barley varieties developed at different years to investigate the morphological and physiological traits related to grain yields. Recently developed varieties were higher in amounts of chlorophyll and nitrogen content of leaf, root activity, root weight and specipic leaf weight as compared with older varieties. Dry matter production was closely related to NAR rather than LAI in new varieties, but indicating the reverse results in older varieties. They showed higher NAR and light transmission rate in new varieties but higher LAI in older varieties. Leaves in new varieties were distributed uniformly according to its position on clum. However, leaves in older varieties arranged irregularly showing more distribution at the upper and middle positions on culm. The factors which showed high correlations with grain yield were chlorophyll content, root activity, NAR, and nitrogen content of leaf of which stepwise multiple regression with grain yield indicated that 90% of total variance was occupied by chlorophyll content, root activity and dry matter.

  • PDF

Effect of Soil Water and Shading Treatment on Chlorophyll Fluorescence Parameters and Photosynthetic Capacity in Cnidium officinale Makino (토양 수분 스트레스와 차광 처리가 천궁의 엽록소 형광반응 및 광합성에 미치는 영향)

  • Kim, Kwang Seop;Seo, Young Jin;Kim, Dong Chun;Nam, Hyo Hoon;Lee, Bu Yong;Kim, Jun hyung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.6
    • /
    • pp.412-420
    • /
    • 2020
  • Background: Measurement of chlorophyll fluorescence (CF) is useful for detection the ability of plants to tolerate environmental stresses such as drought, and excessive sunlight. Cnidium officinale Makino is highly sensitive to water stress and excessive sunlight. In this study, we evaluated the effect of soil water and shade treatment on the photosynthesis and leaf temperature change of C. officinale. Methods and Results: C. officinale was cultivated under uniform irrigation for 1 week drought stress (no watering) for 6 days. A significant decrease in CF was observed on the 5th day of withholding water (approximately 6% of soil water content) regardless of shading. Notably, the Rfd_lss parameter (CF decrease rates) with and without shade treatment was reduced by 73.1% and 56.5% respectively, at 6 days compared with those at the initial stage (0 day). The patterns of the degree of CF parameters corresponded to those of the soil water content and difference between leaf temperature (Ts) and air temperature (Ta). Meanwhile, CF parameters recovered to the 3 - 4 days levels after re-watering, while the soil water potential was completely restored. The suitable soil water content for C. officinale optimal growth was between -5 kPa and -10 kPa in this experiment. Conclusions: Lack of soil water in the cultivation of C. officinale, even with shading, decreased latent heat cooling through transpiration. As a result, heat dissipation declined, and the plant was subjected to drought stress. Soil water content plays a major role in photosynthesis and leaf temperature in C. officinale.

Effects of Aluminum Solution Treatment on the Growth of Forsythia koreana and Platanus occidentalis Cuttings(2) (알루미늄용액 처리가 개나리와 플라타너스삽수의 생장에 미치는 영향(2))

  • 김갑태;추갑철;진운학
    • Korean Journal of Environment and Ecology
    • /
    • v.7 no.1
    • /
    • pp.6-9
    • /
    • 1993
  • To examine aluminum toxicity on woody plants, Forsythia koreans and Platanus occidentalis cuttings were grown in the pot(48$\times$33$\times$9cm) filled with sand, and treated aluminum solution and ground water (pH 6.75) 3times per week from April 28, 1993 to June 16. Aluminum solution were prepared 1.0, 2.5 and 5.0mM aluminum potassium sulfate, dilulted with ground water. Growth-related characters (Shoot growth, leaf number and leaf chlorophyll content ) and root growth were measured and compared among the treatments. In all growth-related characters(Shoot growth, leaf number and leaf chlorophyll content), differences among the treatments were highly significant. In root growth, differences among the treatments were highly significant for Forsythia koreana cuttings, but not for Platanus occidentalis cuttings.

  • PDF

Improvement of Drought Tolerance in Transgenic Tobacco Plant (형질전환 담배의 내건성 개선)

  • Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.173-179
    • /
    • 2016
  • Leaf water and osmotic potential, chlorophyll content, photosynthetic rate, and electrolyte leakage were measured to evaluate tolerance to water stress in wild-type (WT) and transgenic tobacco plants (TR) expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts. Leaf water potential of both WT and TR plants decreased similarly under water stress condition. However, leaf osmotic potential of TR plants more negatively decreased in the process of dehydration, compared with WT plants, suggesting osmotic adjustment. Stomatal conductance (Gs) in WT plants markedly decreased from the Day 4 after withholding water, while that in TR plants retained relatively high values. Relatively low chlorophyll content and photosynthetic rate under water stress were shown in WT plants since $4^{th}$ day after treatment. In particular, damage indicated by electrolyte leakage during water stress was higher in WT plants than in TR plants. On the other hand, SOD and APX activity was remarkably higher in TR plants. These results indicate that transgenic tobacco plants expressing copper/zink superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts improve tolerance to water stress.

Effects of Chitosan on the Growth Responses of Kentucky Bluegrass (Poa pratensis L.) (키토산이 캔터키 블루그래스(Poa pratensis L.) 생장에 미치는 효과)

  • Yoon, Ok-Soon;Kim, Kwang-Sik
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.163-175
    • /
    • 2007
  • This study was initiated to investigate the effect of chitosan on Kentucky bluegrass growth. Chitosan was applied rates of 300, 500, and 800 times dilution at ten-day intervals after transplanting. We observed such growth characteristics asleaf length, root length, numbers of leaves, fresh weight and dry weight, and chlorophyll content. Treatment of 300 X diluted chitosan resulted in the longest leaf length of 26.2cm comparing with the 17.1cm average leaf length of control. Leaf numbers were 21.4 and 31.7 for the control and the 500 X dilution treatment. The root length in control was 16.8cm while the treatment of 500 X diluted chitosan increased root length to 27.4cm. Chlorophyll content resulted 19.9mg/$100cm^2$ for the control and 25.5mg/$100cm^2$ for the treatment of 300 X diluted chitosan. In general, we found that the treatment of 500 X diluted chitosan resulted higher leaf number, chlorophyll content, fresh and dry weight.

Growth and Abscisic Acid Changes of Creeping Thyme in the Exposure of NaCl and Drought (염 및 건조스트레스 하에서 포복형 백리향의 생육과 Abscisic Acid 농도변화)

  • Kim, Min-Jea;Eom, Seok-Hyun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.5
    • /
    • pp.328-334
    • /
    • 2009
  • Experimental purpose was to evaluate growth characteristic and abscisic acid (ABA) responses against salt/drought stresses. In the shoot biomass, creeping thyme was tolerated in mild NaCl stress, ranging 0 to 100 mM, while it was severely reduced in higher salinity. Under constant drought stress, the shoot biomass of creeping thyme showed a worse value compared to that of 100 mM NaCl treatment. Chlorophyll degradation was more severe in immature leaf than mature leaf under salt and drought stresses. In salt stress, immature leaf produced much amounts of ABA compared to mature leaf and also immature leaf showed faster increase of ABA than that of mature leaf. In drought stress, immature leaf responded to stress within 24 hours by the increase of ABA, while mature leaf responded to at 72 hours. Our results recommended that the optimal salinity level of creeping thyme was 50~100 mM NaCl.

Photosynthetic characteristics and chlorophyll of Vitex rotundifolia in coastal sand dune

  • Byoung-Jun Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.103-116
    • /
    • 2023
  • Background: This study analyzed the physiological adaptations of a woody plant, Vitex rotundifolia, in Goraebul coastal sand dunes from May to September 2022. Environmental factors and physiological of plants growing under field and controlled (pot) conditions were compared. Results: Photosynthesis in plants growing in the coastal sand dunes and pots was the highest in June 2022 and July 2022, respectively. Chlorophyll fluorescence indicated the presence of stress in the coastal sand dune environment. The net photosynthesis rate (PN) and Y(II) were highest in June in the coastal sand dune environment and July in the pot environment. In August and September, Y(NPQ) increased in the plants in the coastal sand dune environment, showing their photoprotective mechanism. Chlorophyll a and b contents in the pot plant leaves were higher than those in the coastal sand dune plant leaves; however, chlorophyll-a/b ratio was higher in the coastal sand dune plant leaves than in the pot plant leaves, suggesting a relatively high photosynthetic efficiency. Carotenoid content in the coastal sand dune plant leaves was higher in August and September 2022 than that in the pot plant leaves. Leaf water and soluble carbohydrate contents of the coastal sand dune plant leaves decreased in September 2022, leading to rapid leaf abscission. Diurnal variations in photosynthesis and chlorophyll fluorescence in both environments showed peak activity at 12:00 hour; however, the coastal sand dune plants had lower growth rates and Y(II) than the pot plants. Plants in the coastal sand dunes had higher leaf water and ion contents, indicating that they adapted to water stress through osmotic adjustments. However, plants growing in the coastal sand dunes exhibited reduced photosynthetic activity and accelerated decline due to seasonal temperature decreases. These findings demonstrate the adaptation mechanisms of V. rotundifolia to water stress, poor soils, and high temperature conditions in coastal sand dunes. Conclusions: The observed variations indicate the responses of the V. rotundifolia to environmental stress, and may reveal its survival strategies and adaptation mechanisms to stress. The results provide insights into the ecophysiological characteristics of V. rotundifolia and a basis for the conservation and restoration of damaged coastal sand dunes.

Effects of LED Light Quality of Urban Agricultural Plant Factories on the Growth of Daughter Plants of 'Seolhyang' Strawberry

  • Lee, Kook-Han
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.821-829
    • /
    • 2018
  • This study was conducted to examine the influence of Light-Emitting Diode (LED) light quality in urban agricultural plant factories on the growth and development of Seolhyang strawberry daughter plants in order to improve the efficiency of daughter plant growth and urban agriculture. LED light quality by demonstrated that above-ground growth and development were greatest for daughter plant 2. Daughter plant 1 showed the next highest growth and development, followed by daughter plant 3. Among the different qualities of LED light, the stem was thickest and growth rate of leaves was highest for R + B III (LED quality: red 660 nm + blue 450 nm/photosynthetic photon flux density (PPFD): $241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R (red $660nm/115-117{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). Plant height, leaf width, petiole length, and the leaf growth rate were highest for W (white fluorescent lamp/$241-243{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and lowest for R + B I (red 660nm+blue 450nm/$80-82{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). For above-ground growth and development, as the plants surpassed the seedling age, mixed light (red + blue), rather than monochromatic light (red or blue), and higher PPFD values tended to increase development. Regarding the quality of the LED light, daughter plant 2 showed the highest chlorophyll content, followed by daughter plant 1, and daughter plant 3 showed the least chlorophyll content. When the wavelength was monochromatic, chlorophyll content increased, compared to that when PPFD values were increased. Mixed light vitality was highest in daughter plant 2, followed by 1, and 3, showed increased photosynthesis when PPFD values were high with mixed light, in contrast to the results observed for chlorophyll content.

Effects of Artificial Acid Mist on Leaf Injury and Surface Wettability of Several Broad-Leaved Species (인공산성연무(人工酸性煙霧)의 처리(處理)가 몇 활엽수종(闊葉樹種)의 엽피해(葉被害)와 엽표면(葉表面)의 친수성(親水性)에 미치는 영향(影響))

  • Kim, Gab Tae;Um, Tae Won
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.4
    • /
    • pp.577-585
    • /
    • 1996
  • To seek effective methods for evaluating air pollution and acid rain injury, artificial acid mist(pH 2.5, 3.5 and 4.5) and ground water(pH 6.5) were treated on the potted seedlings of Ligustrum obtusifolium, Cercis chinensis, Hibiscus syriacus and Sophora japonica. Leaf chlorophyll contents, characteristics of leaf-injury, wettability-measurement of diameter of water-droplets on the leaf surface-among treatments were investigated. The results were summarized as follows. 1. Chlorophyll contents of Ligustrum obtusifolium and Hibiscus syriacus measured on June 3 were highest in pH 2.5 plot, but those of Cercis chinensis and Sophora japonica were relatively low level. Chlorophyll contents of Ligustrum obtusifolium measured on August 24 was highest in pH 2.5 plot, but those of Cercis chinensis, Hibiscus syriacus and Sophora japonica were highest in the control. 2. Changes of chlorophyll contents with acid mist treatments were differed among tree species. 3. For all the tested species, leaf injury(injured leaf number and rate, and injured leaf area) increased with decreasing pH levels of acid mist. 4. Leaf tissue injury seemed to be related with the wettability of the leaf surface. Measurement of diameter of water-droplets on the leaf surface might be useful criteria for acid rain or acid mist injury for the glabrous leaved species, such as, Cercis chinensis, Sophora japonica, etc.

  • PDF